240 research outputs found

    Polarizing Political Polls: How Visualization Design Choices Can Shape Public Opinion and Increase Political Polarization

    Full text link
    While we typically focus on data visualization as a tool for facilitating cognitive tasks (e.g., learning facts, making decisions), we know relatively little about their second-order impacts on our opinions, attitudes, and values. For example, could design or framing choices interact with viewers' social cognitive biases in ways that promote political polarization? When reporting on U.S. attitudes toward public policies, it is popular to highlight the gap between Democrats and Republicans (e.g., with blue vs red connected dot plots). But these charts may encourage social-normative conformity, influencing viewers' attitudes to match the divided opinions shown in the visualization. We conducted three experiments examining visualization framing in the context of social conformity and polarization. Crowdworkers viewed charts showing simulated polling results for public policy proposals. We varied framing (aggregating data as non-partisan "All US Adults," or partisan "Democrat" and "Republican") and the visualized groups' support levels. Participants then reported their own support for each policy. We found that participants' attitudes biased significantly toward the group attitudes shown in the stimuli and this can increase inter-party attitude divergence. These results demonstrate that data visualizations can induce social conformity and accelerate political polarization. Choosing to visualize partisan divisions can divide us further

    How Do Viewers Synthesize Conflicting Information from Data Visualizations?

    Full text link
    Scientific knowledge develops through cumulative discoveries that build on, contradict, contextualize, or correct prior findings. Scientists and journalists often communicate these incremental findings to lay people through visualizations and text (e.g., the positive and negative effects of caffeine intake). Consequently, readers need to integrate diverse and contrasting evidence from multiple sources to form opinions or make decisions. However, the underlying mechanism for synthesizing information from multiple visualizations remains underexplored. To address this knowledge gap, we conducted a series of four experiments (N = 1166) in which participants synthesized empirical evidence from a pair of line charts presented sequentially. In Experiment 1, we administered a baseline condition with charts depicting no specific context where participants held no strong belief. To test for the generalizability, we introduced real-world scenarios to our visualizations in Experiment 2, and added accompanying text descriptions similar to on-line news articles or blog posts in Experiment 3. In all three experiments, we varied the relative direction and magnitude of line slopes within the chart pairs. We found that participants tended to weigh the positive slope more when the two charts depicted relationships in the opposite direction (e.g., one positive slope and one negative slope). Participants tended to weigh the less steep slope when the two charts depicted relationships in the same direction (e.g., both positive). Through these experiments, we characterize participants' synthesis behaviors depending on the relationship between the information they viewed, contribute to theories describing underlying cognitive mechanisms in information synthesis, and describe design implications for data storytelling.Comment: 11 pages, 5 figures, To be published in The IEEE Transactions on Visualizations and Computer Graphic

    Same Data, Diverging Perspectives: The Power of Visualizations to Elicit Competing Interpretations

    Full text link
    People routinely rely on data to make decisions, but the process can be riddled with biases. We show that patterns in data might be noticed first or more strongly, depending on how the data is visually represented or what the viewer finds salient. We also demonstrate that viewer interpretation of data is similar to that of 'ambiguous figures' such that two people looking at the same data can come to different decisions. In our studies, participants read visualizations depicting competitions between two entities, where one has a historical lead (A) but the other has been gaining momentum (B) and predicted a winner, across two chart types and three annotation approaches. They either saw the historical lead as salient and predicted that A would win, or saw the increasing momentum as salient and predicted B to win. These results suggest that decisions can be influenced by both how data are presented and what patterns people find visually salient

    Biased Average Position Estimates in Line and Bar Graphs:Underestimation, Overestimation, and Perceptual Pull

    Get PDF
    In visual depictions of data, position (i.e., the vertical height of a line or a bar) is believed to be the most precise way to encode information compared to other encodings (e.g., hue). Not only are other encodings less precise than position, but they can also be prone to systematic biases (e.g., color category boundaries can distort perceived differences between hues). By comparison, position's high level of precision may seem to protect it from such biases. In contrast, across three empirical studies, we show that while position may be a precise form of data encoding, it can also produce systematic biases in how values are visually encoded, at least for reports of average position across a short delay. In displays with a single line or a single set of bars, reports of average positions were significantly biased, such that line positions were underestimated and bar positions were overestimated. In displays with multiple data series (i.e., multiple lines and/or sets of bars), this systematic bias still persisted. We also observed an effect of "perceptual pull", where the average position estimate for each series was 'pulled' toward the other. These findings suggest that, although position may still be the most precise form of visual data encoding, it can also be systematically biased

    Visual Arrangements of Bar Charts Influence Comparisons in Viewer Takeaways

    Get PDF

    My Model is Unfair, Do People Even Care? Visual Design Affects Trust and Perceived Bias in Machine Learning

    Full text link
    Machine learning technology has become ubiquitous, but, unfortunately, often exhibits bias. As a consequence, disparate stakeholders need to interact with and make informed decisions about using machine learning models in everyday systems. Visualization technology can support stakeholders in understanding and evaluating trade-offs between, for example, accuracy and fairness of models. This paper aims to empirically answer "Can visualization design choices affect a stakeholder's perception of model bias, trust in a model, and willingness to adopt a model?" Through a series of controlled, crowd-sourced experiments with more than 1,500 participants, we identify a set of strategies people follow in deciding which models to trust. Our results show that men and women prioritize fairness and performance differently and that visual design choices significantly affect that prioritization. For example, women trust fairer models more often than men do, participants value fairness more when it is explained using text than as a bar chart, and being explicitly told a model is biased has a bigger impact than showing past biased performance. We test the generalizability of our results by comparing the effect of multiple textual and visual design choices and offer potential explanations of the cognitive mechanisms behind the difference in fairness perception and trust. Our research guides design considerations to support future work developing visualization systems for machine learning.Comment: 11 pages, 6 figures, to appear in IEEE Transactions of Visualization and Computer Graphics (Also in proceedings of IEEE VIS 2023

    Same Data, Diverging Perspectives: The Power of Visualizations to Elicit Competing Interpretations

    Get PDF
    People routinely rely on data to make decisions, but the process can be riddled with biases. We show that patterns in data might be noticed first or more strongly, depending on how the data is visually represented or what the viewer finds salient. We also demonstrate that viewer interpretation of data is similar to that of ‘ambiguous figures’ such that two people looking at the same data can come to different decisions. In our studies, participants read visualizations depicting competitions between two entities, where one has a historical lead (A) but the other has been gaining momentum (B) and predicted a winner, across two chart types and three annotation approaches. They either saw the historical lead as salient and predicted that A would win, or saw the increasing momentum as salient and predicted B to win. These results suggest that decisions can be influenced by both how data are presented and what patterns people find visually salient
    • …
    corecore