16,177 research outputs found

    Spin Hall Effect in Atoms

    Get PDF
    We propose an optical means to realize a spin hall effect (SHE) in neutral atomic system by coupling the internal spin states of atoms to radiation. The interaction between the external optical fields and the atoms creates effective magnetic fields that act in opposite directions on "electrically" neutral atoms with opposite spin polarizations. This effect leads to a Landau level structure for each spin orientation in direct analogy with the familiar SHE in semiconductors. The conservation and topological properties of the spin current, and the creation of a pure spin current are discussed.Comment: 4 pages, 2 figure; Final versio

    Correlation between incoherent phase fluctuations and disorder in Y1x_{1-x}Prx_xBa2_2Cu3_3O7δ_{7-\delta} epitaxial films from Nernst effect measurements

    Get PDF
    Measurements of Nernst effect, resistivity and Hall angle on epitaxial films of Y1x_{1-x}Prx_xBa2_2Cu3_3O7δ_{7-\delta}(Pr-YBCO, 0x\leq x\leq0.4) are reported over a broad range of temperature and magnetic field. While the Hall and resistivity data suggest a broad pseudogap regime in accordance with earlier results, these first measurements of the Nernst effect on Pr-YBCO show a large signal above the superconducting transition temperature(Tc_c). This effect is attributed to vortex-like excitations in the phase incoherent condensate existing above Tc_c. A correlation between disorder and the width of the phase fluctuation regime has been established for the YBCO family of cuprates, which suggests a Tc_c\approx110K for disorder-free YBa2_2Cu3_3O7δ_{7-\delta}.Comment: 5 pages, 6 figure

    Twisted split-ring-resonator photonic metamaterial with huge optical activity

    Full text link
    Coupled split-ring-resonator metamaterials have previously been shown to exhibit large coupling effects, which are a prerequisite for obtaining large effective optical activity. By a suitable lateral arrangement of these building blocks, we completely eliminate linear birefringence and obtain pure optical activity and connected circular optical dichroism. Experiments at around 100-THz frequency and corresponding modeling are in good agreement. Rotation angles of about 30 degrees for 205nm sample thickness are derived.Comment: 6 pages, 4 figure

    Identifying strongly correlated supersolid states on the optical lattice by quench-induced \pi-states

    Full text link
    We consider the rapid quench of a one-dimensional strongly correlated supersolid to a localized density wave (checkerboard) phase, and calculate the first-order coherence signal following the quench. It is shown that unique coherence oscillations between the even and odd sublattice sites of the checkerboard are created by the quench, which are absent when the initial state is described by a Gutzwiller product state. This is a striking manifestation of the versatility of the far-from-equilbrium and nonperturbative collapse and revival phenomenon as a microscope for quantum correlations in complex many-body states. For the present example, this opens up the possibility to discriminate experimentally between mean-field and many-body origins of supersolidity.Comment: 6 pages of EPL2 style, 5 figure
    corecore