148 research outputs found

    Bipedal Hopping: Reduced-order Model Embedding via Optimization-based Control

    Get PDF
    This paper presents the design and validation of controlling hopping on the 3D bipedal robot Cassie. A spring-mass model is identified from the kinematics and compliance of the robot. The spring stiffness and damping are encapsulated by the leg length, thus actuating the leg length can create and control hopping behaviors. Trajectory optimization via direct collocation is performed on the spring-mass model to plan jumping and landing motions. The leg length trajectories are utilized as desired outputs to synthesize a control Lyapunov function based quadratic program (CLF-QP). Centroidal angular momentum, taking as an addition output in the CLF-QP, is also stabilized in the jumping phase to prevent whole body rotation in the underactuated flight phase. The solution to the CLF-QP is a nonlinear feedback control law that achieves dynamic jumping behaviors on bipedal robots with compliance. The framework presented in this paper is verified experimentally on the bipedal robot Cassie.Comment: 8 pages, 7 figures, accepted by IROS 201

    Orbit Characterization, Stabilization and Composition on 3D Underactuated Bipedal Walking via Hybrid Passive Linear Inverted Pendulum Model

    Get PDF
    A Hybrid passive Linear Inverted Pendulum (H-LIP) model is proposed for characterizing, stabilizing and composing periodic orbits for 3D underactuated bipedal walking. Specifically, Period-l (P1) and Period -2 (P2) orbits are geometrically characterized in the state space of the H-LIP. Stepping controllers are designed for global stabilization of the orbits. Valid ranges of the gains and their optimality are derived. The optimal stepping controller is used to create and stabilize the walking of bipedal robots. An actuated Spring-loaded Inverted Pendulum (aSLIP) model and the underactuated robot Cassie are used for illustration. Both the aSLIP walking with PI or P2 orbits and the Cassie walking with all 3D compositions of the PI and P2 orbits can be smoothly generated and stabilized from a stepping-in-place motion. This approach provides a perspective and a methodology towards continuous gait generation and stabilization for 3D underactuated walking robots

    Dynamic and Versatile Humanoid Walking via Embedding 3D Actuated SLIP Model with Hybrid LIP Based Stepping

    Get PDF
    In this paper, we propose an efficient approach to generate dynamic and versatile humanoid walking with non-constant center of mass (COM) height. We exploit the benefits of using reduced order models (ROMs) and stepping control to generate dynamic and versatile walking motion. Specifically, we apply the stepping controller based on the Hybrid Linear Inverted Pendulum Model (H-LIP) to perturb a periodic walking motion of a 3D actuated Spring Loaded Inverted Pendulum (3D-aSLIP), which yields versatile walking behaviors of the 3D-aSLIP, including various 3D periodic walking, fixed location tracking, and global trajectory tracking. The 3D-aSLIP walking is then embedded on the fully-actuated humanoid via the task space control on the COM dynamics and ground reaction forces. The proposed approach is realized on the robot model of Atlas in simulation, wherein versatile dynamic motions are generated.Comment: 8 pages, 8 figures; To appear in Robotics and Automation Letter

    Sequential Motion Planning for Bipedal Somersault via Flywheel SLIP and Momentum Transmission with Task Space Control

    Get PDF
    In this paper, we present a sequential motion planning and control method for generating somersaults on bipedal robots. The somersault (backflip or frontflip) is considered as a coupling between an axile hopping motion and a rotational motion about the center of mass of the robot; these are encoded by a hopping Spring-loaded Inverted Pendulum (SLIP) model and the rotation of a Flywheel, respectively. We thus present the Flywheel SLIP model for generating the desired motion on the ground phase. In the flight phase, we present a momentum transmission method to adjust the orientation of the lower body based on the conservation of the centroidal momentum. The generated motion plans are realized on the full-dimensional robot via momentum-included task space control. Finally, the proposed method is implemented on a modified version of the bipedal robot Cassie in simulation wherein multiple somersault motions are generated
    • …
    corecore