84 research outputs found

    Molecular Joint Representation Learning via Multi-modal Information

    Full text link
    In recent years, artificial intelligence has played an important role on accelerating the whole process of drug discovery. Various of molecular representation schemes of different modals (e.g. textual sequence or graph) are developed. By digitally encoding them, different chemical information can be learned through corresponding network structures. Molecular graphs and Simplified Molecular Input Line Entry System (SMILES) are popular means for molecular representation learning in current. Previous works have done attempts by combining both of them to solve the problem of specific information loss in single-modal representation on various tasks. To further fusing such multi-modal imformation, the correspondence between learned chemical feature from different representation should be considered. To realize this, we propose a novel framework of molecular joint representation learning via Multi-Modal information of SMILES and molecular Graphs, called MMSG. We improve the self-attention mechanism by introducing bond level graph representation as attention bias in Transformer to reinforce feature correspondence between multi-modal information. We further propose a Bidirectional Message Communication Graph Neural Network (BMC GNN) to strengthen the information flow aggregated from graphs for further combination. Numerous experiments on public property prediction datasets have demonstrated the effectiveness of our model

    Adaptively Placed Multi-Grid Scene Representation Networks for Large-Scale Data Visualization

    Full text link
    Scene representation networks (SRNs) have been recently proposed for compression and visualization of scientific data. However, state-of-the-art SRNs do not adapt the allocation of available network parameters to the complex features found in scientific data, leading to a loss in reconstruction quality. We address this shortcoming with an adaptively placed multi-grid SRN (APMGSRN) and propose a domain decomposition training and inference technique for accelerated parallel training on multi-GPU systems. We also release an open-source neural volume rendering application that allows plug-and-play rendering with any PyTorch-based SRN. Our proposed APMGSRN architecture uses multiple spatially adaptive feature grids that learn where to be placed within the domain to dynamically allocate more neural network resources where error is high in the volume, improving state-of-the-art reconstruction accuracy of SRNs for scientific data without requiring expensive octree refining, pruning, and traversal like previous adaptive models. In our domain decomposition approach for representing large-scale data, we train an set of APMGSRNs in parallel on separate bricks of the volume to reduce training time while avoiding overhead necessary for an out-of-core solution for volumes too large to fit in GPU memory. After training, the lightweight SRNs are used for realtime neural volume rendering in our open-source renderer, where arbitrary view angles and transfer functions can be explored. A copy of this paper, all code, all models used in our experiments, and all supplemental materials and videos are available at https://github.com/skywolf829/APMGSRN.Comment: Accepted to IEEE VIS 202

    Attack and Defense Analysis of Learned Image Compression

    Full text link
    Learned image compression (LIC) is becoming more and more popular these years with its high efficiency and outstanding compression quality. Still, the practicality against modified inputs added with specific noise could not be ignored. White-box attacks such as FGSM and PGD use only gradient to compute adversarial images that mislead LIC models to output unexpected results. Our experiments compare the effects of different dimensions such as attack methods, models, qualities, and targets, concluding that in the worst case, there is a 61.55% decrease in PSNR or a 19.15 times increase in bpp under the PGD attack. To improve their robustness, we conduct adversarial training by adding adversarial images into the training datasets, which obtains a 95.52% decrease in the R-D cost of the most vulnerable LIC model. We further test the robustness of H.266, whose better performance on reconstruction quality extends its possibility to defend one-step or iterative adversarial attacks

    InfoCL: Alleviating Catastrophic Forgetting in Continual Text Classification from An Information Theoretic Perspective

    Full text link
    Continual learning (CL) aims to constantly learn new knowledge over time while avoiding catastrophic forgetting on old tasks. We focus on continual text classification under the class-incremental setting. Recent CL studies have identified the severe performance decrease on analogous classes as a key factor for catastrophic forgetting. In this paper, through an in-depth exploration of the representation learning process in CL, we discover that the compression effect of the information bottleneck leads to confusion on analogous classes. To enable the model learn more sufficient representations, we propose a novel replay-based continual text classification method, InfoCL. Our approach utilizes fast-slow and current-past contrastive learning to perform mutual information maximization and better recover the previously learned representations. In addition, InfoCL incorporates an adversarial memory augmentation strategy to alleviate the overfitting problem of replay. Experimental results demonstrate that InfoCL effectively mitigates forgetting and achieves state-of-the-art performance on three text classification tasks. The code is publicly available at https://github.com/Yifan-Song793/InfoCL.Comment: Findings of EMNLP 2023. An improved version of arXiv:2305.0728
    • …
    corecore