518 research outputs found

    Characterization and Comparison of Mesoporous Silica Particles for Optimized Drug Delivery

    Get PDF
    In this study we have investigated the suitability of a number of different mesoporous silica nanoparticle structures for carrying a drug cargo. We have fully characterized the nanoparticles in terms of their physical parameters; size, surface area, internal pore size and structure. These data are all required if we are to make an informed judgement on the suitability of the structure for drug delivery in vivo. With these parameters in mind, we investigated the loading/unloading profile of a model therapeutic into the pore structure of the nanoparticles. We demonstrate that the release can be controlled by capping the pores on the nanoparticles to achieve temporal control of the unloading. We have also examined the rate and mechanism of the degradation of the nanoparticles over an extended period of time. The eventual dissolution of the nanoparticles after cargo release is a desirable property for a drug delivery system

    Discussion on the Construction of Ecological Water Network in Guangxi Province of China

    Get PDF
    The water network plays an important role in maintaining the stability of regional water resource and ecological environment. It is also affecting the harmonious development between environment and economy. Guangxi is one of the provinces with relatively rich water resources in China, while the ecological water network exists deficiencies and faces challenges. The current situation and defects of ecological water network in Guangxi province will be discussed. By studying the experience of the establishing and the preserve of ecological water network in various regions at home and abroad, some suggestions and targeted measures will be mentioned for a better ecological water network in Guangxi

    Effects of Mountain Rivers Cascade Hydropower Stations on Water Ecosystems

    Get PDF
    China is rich in hydropower resources, and mountain rivers have abundant water resources and huge development potential, which have a profound impact on the pattern of water resources allocation in China. As the main way of water resources and hydropower development, the construction of cascade hydropower stations, while meeting the requirements of water resources utilization for social development, has also brought adverse effects on river ecosystems. Therefore, the impact of the construction of cascade hydropower stations on mountainous river ecosystems, where the minimum ecological flow of rivers must be ensured and reviewed. In addition, this paper proposed the deficiencies and outlooks for cascade hydropower stations based on previous research results

    Fatigue crack propagation behavior of Ni-based superalloys after overloading at elevated temperatures

    Get PDF
    AbstractThe fatigue crack propagation behavior of three superalloys subjected to a single overloading at elevated temperatures was investigated. The fatigue crack propagation rate FCPR versus stress intensity factor range data da/dN—ΔK were calculated using the two-point secant method. It was found that the crack growth rates of the investigated materials were retarded after overloading with an overload ratio ROL=1.6. The size of the plastic zone in the front of the crack tip and its relation to loading level were discussed. The overload retardation effects are attributed to crack closure. The fatigue damage in the plastic zone can also be a factor to explain the overload retardation

    Coupling of RF Antennas to Large Volume Helicon Plasma

    Full text link
    Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.50.5~m, and exploring its frequency dependence in the range of 13.567013.56-70~MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power

    Go@Se@ni cathode materials for lithium-selenium battery

    Get PDF
    Selenium is a promising cathode material for high-energy lithium batteries. In this work, selenium was electrodeposited on nickel foam from aqueous selenite solution. The influences of pH values and current density on electrodeposited Se@Ni were investigated. It is found that electrodeposition at pH 7 and 0.5 mA cm −2 enables high current efficiency and produces uniform and smooth deposits. Graphene oxide (GO) was further coated on Se@Ni through physical adsorption to produce GO@Se@Ni. The developed GO@Se@Ni electrode delivers a high initial specific capacity of 593 mAh g −1 and good capacity retention over 100 cycles at 0.1 C

    Multifrequency Wireless Channel Measurements and Characterization in Large Indoor Office Environments

    Get PDF
    This article performs extensive channel measurements and characteristics analysis to investigate large-scale fading (LSF) and small-scale fading (SSF) of wireless local area network (WLAN) channels in large indoor office environments. Multifrequency single-input-single-output (SISO) channel measurements are conducted at 3, 5.5, and 6.5 GHz under the same conditions to explore the frequency dependence of LSF, delay spread (DS), and KK -factor (KF). Then, SISO channel measurements with different half-power beamwidths (HPBWs) of antennas are performed at 5.5 GHz in access point (AP) to user equipment (UE) and AP-to-AP scenarios. The effects of antenna HPBW on LSF, DS, and KF are investigated, thereby inspiring the AP deployment in high-density (HD) scenarios. Finally, 32×6432 \times 64 multiple-input-multiple-output (MIMO) channel measurements at 5.5 GHz are conducted to study the SSF of the time nonstationarity and multilink correlation. The time nonstationarity, including the parameters' drifting and cluster evolution caused by the movement of the UE, is verified by the measurement results. Multilink correlations are illustrated from the perspectives of the angular power spectral density (APSD) and correlation matrix collinearity (CMC). The results show that the distance between users and separation angle can affect the multilink correlation.</p
    corecore