263 research outputs found

    Bionic Collapsible Wings in Aquatic-aerial Robot

    Full text link
    The concept of aerial-aquatic robots has emerged as an innovative solution that can operate both in the air and underwater. Previous research on the design of such robots has been mainly focused on mature technologies such as fixed-wing and multi-rotor aircraft. Flying fish, a unique aerial-aquatic animal that can both swim in water and glide over the sea surface, has not been fully explored as a bionic robot model, especially regarding its motion patterns with the collapsible pectoral fins. To verify the contribution of the collapsible wings to the flying fish motion pattern, we have designed a novel bio-robot with collapsible wings inspired by the flying fish. The bionic prototype has been successfully designed and fabricated, incorporating collapsible wings with soft hydraulic actuators, an innovative application of soft actuators to a micro aquatic-aerial robot. We have analyzed and built a precise model of dynamics for control, and tested both the soft hydraulic actuators and detailed aerodynamic coefficients. To further verify the feasibility of collapsible wings, we conducted simulations in different situations such as discharge angles, the area of collapsible wings, and the advantages of using ground effect. The results confirm the control of the collapsible wings and demonstrate the unique multi-modal motion pattern between water and air. Overall, our research represents the study of the collapsible wings in aquatic-aerial robots and significant contributes to the development of aquatic-aerial robots. The using of the collapsible wings must a contribution to the future aquatic-aerial robot

    Semi- and Weakly-Supervised Learning for Mammogram Mass Segmentation with Limited Annotations

    Full text link
    Accurate identification of breast masses is crucial in diagnosing breast cancer; however, it can be challenging due to their small size and being camouflaged in surrounding normal glands. Worse still, it is also expensive in clinical practice to obtain adequate pixel-wise annotations for training deep neural networks. To overcome these two difficulties with one stone, we propose a semi- and weakly-supervised learning framework for mass segmentation that utilizes limited strongly-labeled samples and sufficient weakly-labeled samples to achieve satisfactory performance. The framework consists of an auxiliary branch to exclude lesion-irrelevant background areas, a segmentation branch for final prediction, and a spatial prompting module to integrate the complementary information of the two branches. We further disentangle encoded obscure features into lesion-related and others to boost performance. Experiments on CBIS-DDSM and INbreast datasets demonstrate the effectiveness of our method.Comment: Accepted to IEEE ISBI 202

    Visual memory benefits from prolonged encoding time regardless of stimulus type

    Get PDF
    It is generally assumed that the storage capacity of visual working memory (VWM) is limited, holding about 3-4 items. Recent work with real-world objects, however, has challenged this view by providing evidence that the VWM capacity for real-world objects is not fixed but instead increases with prolonged encoding time (Brady, Stormer, & Alvarez, 2016). Critically, in this study, no increase with prolonged encoding time was observed for storing simple colors. Brady et al. (2016) argued that the larger capacity for real-world objects relative to colors is due to the additional conceptual information of real-world objects. With basically the same methods of Brady et al., in Experiments 1-3, we were unable to replicate their basic findings. Instead, we found that visual memory for simple colors also benefited from prolonged encoding time. Experiment 4 showed that the scale of the encoding time benefit was the same for familiar and unfamiliar objects, suggesting that the added conceptual information does not contribute to this benefit. We conclude that visual memory benefits from prolonged encoding time regardless of stimulus type

    LDSF: Lightweight Dual-Stream Framework for SAR Target Recognition by Coupling Local Electromagnetic Scattering Features and Global Visual Features

    Full text link
    Mainstream DNN-based SAR-ATR methods still face issues such as easy overfitting of a few training data, high computational overhead, and poor interpretability of the black-box model. Integrating physical knowledge into DNNs to improve performance and achieve a higher level of physical interpretability becomes the key to solving the above problems. This paper begins by focusing on the electromagnetic (EM) backscattering mechanism. We extract the EM scattering (EMS) information from the complex SAR data and integrate the physical properties of the target into the network through a dual-stream framework to guide the network to learn physically meaningful and discriminative features. Specifically, one stream is the local EMS feature (LEMSF) extraction net. It is a heterogeneous graph neural network (GNN) guided by a multi-level multi-head attention mechanism. LEMSF uses the EMS information to obtain topological structure features and high-level physical semantic features. The other stream is a CNN-based global visual features (GVF) extraction net that captures the visual features of SAR pictures from the image domain. After obtaining the two-stream features, a feature fusion subnetwork is proposed to adaptively learn the fusion strategy. Thus, the two-stream features can maximize the performance. Furthermore, the loss function is designed based on the graph distance measure to promote intra-class aggregation. We discard overly complex design ideas and effectively control the model size while maintaining algorithm performance. Finally, to better validate the performance and generalizability of the algorithms, two more rigorous evaluation protocols, namely once-for-all (OFA) and less-for-more (LFM), are used to verify the superiority of the proposed algorithm on the MSTAR

    Evaluation and comparison of the processing methods of airborne gravimetry concerning the errors effects on downward continuation results: Case studies in Louisiana (USA) and the Tibetan Plateau (China)

    Get PDF
    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3–5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems

    Injecting Image Details into CLIP's Feature Space

    Full text link
    Although CLIP-like Visual Language Models provide a functional joint feature space for image and text, due to the limitation of the CILP-like model's image input size (e.g., 224), subtle details are lost in the feature representation if we input high-resolution images (e.g., 2240). In this work, we introduce an efficient framework that can produce a single feature representation for a high-resolution image that injects image details and shares the same semantic space as the original CLIP. In the framework, we train a feature fusing model based on CLIP features extracted from a carefully designed image patch method that can cover objects of any scale, weakly supervised by image-agnostic class prompted queries. We validate our framework by retrieving images from class prompted queries on the real world and synthetic datasets, showing significant performance improvement on these tasks. Furthermore, to fully demonstrate our framework's detail retrieval ability, we construct a CLEVR-like synthetic dataset called CLVER-DS, which is fully annotated and has a controllable object scale

    Clustering based Multiple Anchors High-Dimensional Model Representation

    Full text link
    In this work, a cut high-dimensional model representation (cut-HDMR) expansion based on multiple anchors is constructed via the clustering method. Specifically, a set of random input realizations is drawn from the parameter space and grouped by the centroidal Voronoi tessellation (CVT) method. Then for each cluster, the centroid is set as the reference, thereby the corresponding zeroth-order term can be determined directly. While for non-zero order terms of each cut-HDMR, a set of discrete points is selected for each input component, and the Lagrange interpolation method is applied. For a new input, the cut-HDMR corresponding to the nearest centroid is used to compute its response. Numerical experiments with high-dimensional integral and elliptic stochastic partial differential equation as backgrounds show that the CVT based multiple anchors cut-HDMR can alleviate the negative impact of a single inappropriate anchor point, and has higher accuracy than the average of several expansions

    Dynamic analysis of impact on needle valve assembly

    Get PDF
    Use dynamics theory to establish finite element model of the needle valve assembly of marine diesel engine in the LS-DYNA and transient analysis calculation by explicit solving method. Analyze the time series diagram of equivalent stress of the impact surface and classify the impact phase according to the kinetic theory. Finally, the strength check is performed in the phase where the influence of the impact is most affected by analyzing the calculated equivalent stress results

    Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal Transformer

    Full text link
    Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages. However, safely and stably integrating the high permeability intermittent power energy into electric power systems remains challenging. Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations. Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation. In this work, we propose a novel end-to-end wind power forecasting model named Hierarchical Spatial-Temporal Transformer Network (HSTTN) to address the long-term WPF problems. Specifically, we construct an hourglass-shaped encoder-decoder framework with skip-connections to jointly model representations aggregated in hierarchical temporal scales, which benefits long-term forecasting. Based on this framework, we capture the inter-scale long-range temporal dependencies and global spatial correlations with two parallel Transformer skeletons and strengthen the intra-scale connections with downsampling and upsampling operations. Moreover, the complementary information from spatial and temporal features is fused and propagated in each other via Contextual Fusion Blocks (CFBs) to promote the prediction further. Extensive experimental results on two large-scale real-world datasets demonstrate the superior performance of our HSTTN over existing solutions.Comment: Accepted to IJCAI 202
    • …
    corecore