225 research outputs found

    Nanoscale Reconfigurable Intelligent Surface Design and Performance Analysis for Terahertz Communications

    Full text link
    Terahertz (THz) communications have been envisioned as a promising enabler to provide ultra-high data transmission for sixth generation (6G) wireless networks. To tackle the blockage vulnerability brought by severe attenuation and poor diffraction of THz waves, a nanoscale reconfigurable intelligent surface (NRIS) is developed to smartly manipulate the propagation directions of incident THz waves. In this paper, the electric properties of the graphene are investigated by revealing the relationship between conductivity and applied voltages, and then an efficient hardware structure of electrically-controlled NRIS is designed based on Fabry-Perot resonance model. Particularly, the phase response of NRIS can be programmed up to 306.82 degrees. To analyze the hardware performance, we jointly design the passive and active beamforming for NRIS aided THz communication system. Particularly, an adaptive gradient descent (A-GD) algorithm is developed to optimize the phase shift matrix of NRIS by dynamically updating the step size during the iterative process. Finally, numerical results demonstrate the effectiveness of our designed hardware architecture as well as the developed algorithm.Comment: 9 pages, 8 figures. arXiv admin note: substantial text overlap with arXiv:2012.0699

    MicroRNA-143 Targets MACC1 to Inhibit Cell Invasion and Migration in Colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) have been suggested to play a vital role in tumor initiation and progression by negatively regulating oncogenes and tumor suppressors. Quite recently, studies have identified some miRNAs operating to promote or suppress tumor invasion or metastasis via regulating metastasis-related genes, providing potential therapeutic targets on anti-metastasis strategy. Metastasis-associated in colon cancer-1 (MACC1) has been newly identified to express highly in colorectal cancer (CRC) and promote tumor metastasis through transactivating metastasis-inducing HGF/MET signaling pathway. In this study, we investigated whether miRNA 143 is involved in the regulation of MACC1 and thus plays a functional role in CRC.</p> <p>Results</p> <p>Using both in silico prediction and western blot assay, we found the previously reported tumor suppressive miR-143 targeted MACC1 in CRC. The direct interaction between them was confirmed by 3' UTR luciferase reporter gene. In concordance with the inhibitory effects induced by siRNA mediated knockdown of MACC1, restoration of miR-143 by mimics in SW620 cells significantly attenuated cell growth, migration and invasion. It is notable that combined treatment of miR-143 mimics and MACC1 siRNA induced synergistic inhibitory effects compared to either miR-143 mimics or MACC1 siRNA treatment alone. Conversely, reduction of miR-143 by inhibitors in SW480 cells apparently stimulated these phenotypes. Furthermore, we observed that miR-143 level was inversely correlated with MACC1 mRNA expression in CRC tissues.</p> <p>Conclusions</p> <p>Our findings newly described miR-143/MACC1 link and provided a potential mechanism for MACC1 dysregulation and contribution to CRC cell invasion. It may help to estimate the therapeutic utility of miR-143 in CRC.</p

    Boosting API Recommendation with Implicit Feedback

    Get PDF
    Developers often need to use appropriate APIs to program efficiently, but it is usually a difficult task to identify the exact one they need from a vast of candidates. To ease the burden, a multitude of API recommendation approaches have been proposed. However, most of the currently available API recommenders do not support the effective integration of users' feedback into the recommendation loop. In this paper, we propose a framework, BRAID (Boosting RecommendAtion with Implicit FeeDback), which leverages learning-to-rank and active learning techniques to boost recommendation performance. By exploiting users' feedback information, we train a learning-to-rank model to re-rank the recommendation results. In addition, we speed up the feedback learning process with active learning. Existing query-based API recommendation approaches can be plugged into BRAID. We select three state-of-the-art API recommendation approaches as baselines to demonstrate the performance enhancement of BRAID measured by Hit@k (Top-k), MAP, and MRR. Empirical experiments show that, with acceptable overheads, the recommendation performance improves steadily and substantially with the increasing percentage of feedback data, comparing with the baselines.Comment: 15 pages, 4 figure

    Fecal carriage and genetic characteristics of carbapenem-resistant enterobacterales among adults from four provinces of China

    Get PDF
    Carbapenem-resistant Enterobacterales (CRE) is a global concern. This study investigated the prevalence of fecal colonization carriage and clonal dissemination of CRE among population in four provinces of China. A total of 685 stool samples were collected from four provinces in China. Among these samples, 141 and 544 were obtained from healthy and hospitalized individuals, respectively. The overall fecal carriage rate was 9.6% (65/685) with 4.26% (95% CI: 0.9ā€“7.6) in healthy individuals and 10.84% (95% CI: 8.2ā€“13.5) in hospitalized patients. The highest prevalence was in Henan province (18.35%, 95% CI: 9%ā€“18.7%). Sixty-six CRE isolates were identified in Escherichia coli (56.06%, 37/66), Klebsiella (15.15%, 10/66), Citrobacter (13.63%, 9/66), Enterobacter (12.12%, 8/66), and Atlantibacter (1.51%, 1/66). All CRE strains carried carbapenemase genes and multiple antibiotics resistance genes, blaNDMāˆ’5 (77.27%, 51/66) was the most common carbapenemase gene, followed by blaNDMāˆ’1 (19.69%, 13/66). Antibiotic resistance genes, including blaIMPāˆ’4, and the colistin colistin resistance (mcr-1) gene were also identified. All CRE isolates belonged to different sequence types (STs). ST206 (36.84%, 14/38) in E. coli and ST2270 (60%, 6/10) in Klebsiella were significantly dominant clones. The results indicated the prevalence of CRE fecal carriage among adults of China, mostly blaNDM-producing E coli, which pose significant challenges for clinical management. Screening for CRE colonization is necessary to control infection

    Research Progress on the Correlation between Different Dietary Patterns and Hyperuricemia Mediated by Intestinal Flora

    Get PDF
    Hyperuricemia (HUA) is a purine metabolism disorder caused by the imbalance between uric acid production and excretion, which, when severe, can lead to gout and renal function damage. At present, the prevalence of HUA/gout is increasing yearly in China and the HUA/gout patients are becoming younger and younger. Recent studies have shown that the intestinal flora of patients with HUA/gout is imbalanced when compared with that of healthy people, and different dietary patterns can affect the level of uric acid by adjusting the intestinal flora. This paper elaborates on the characteristics of the intestinal flora in patients with HUA/gout and the effect of the intestinal flora on uric acid metabolism, which will lay a theoretical foundation for the prevention, early diagnosis and auxiliary treatment of HUA/gout. This paper also summarizes recent progress in understanding the impact of different dietary patterns on uric acid levels in order to guide patients to effectively prevent and delay the occurrence of HUA/gout by adjusting their dietary patterns

    Extracellular vesicles in endometriosis: role and potential

    Get PDF
    Endometriosis is a chronic inflammatory gynecological disease, which profoundly jeopardizes womenā€™s quality of life and places a significant medical burden on society. The pathogenesis of endometriosis remains unclear, posing major clinical challenges in diagnosis and treatment. There is an urgent demand for the development of innovative non-invasive diagnostic techniques and the identification of therapeutic targets. Extracellular vesicles, recognized for transporting a diverse array of signaling molecules, have garnered extensive attention as a novel mode of intercellular communication. A burgeoning body of research indicates that extracellular vesicles play a pivotal role in the pathogenesis of endometriosis, which may provide possibility and prospect for both diagnosis and treatment. In light of this context, this article focuses on the involvement of extracellular vesicles in the pathogenesis of endometriosis, which deliver information among endometrial stromal cells, macrophages, mesenchymal stem cells, and other cells, and explores their potential applications in the diagnosis and treatment, conducing to the emergence of new strategies for clinical diagnosis and treatment

    Gravesā€™ disease as a driver of depression: a mechanistic insight

    Get PDF
    Gravesā€™ disease (GD) is characterized by diffuse enlargement and overactivity of the thyroid gland, which may be accompanied by other physical symptoms. Among them, depression can dramatically damage patientsā€™ quality of life, yet its prevalence in GD has not received adequate attention. Some studies have established a strong correlation between GD and increased risk of depression, though the data from current study remains limited. The summary of mechanistic insights regarding GD and depression has underpinned possible pathways by which GD contributes to depression. In this review, we first summarized the clinical evidence that supported the increased prevalence of depression by GD. We then concentrated on the mechanistic findings related to the acceleration of depression in the context of GD, as mounting evidence has indicated that GD promotes the development of depression through various mechanisms, including triggering autoimmune responses, inducing hormonal disorders, and influencing the thyroid-gut-microbiome-brain axis. Finally, we briefly presented potential therapeutic approaches to decreasing the risk of depression among patients with GD

    S100A8/A9 as a Prognostic Biomarker with Causal Effects for Post-Acute Myocardial Infarction Heart Failure

    Get PDF
    Heart failure is the prevalent complication of acute myocardial infarction. We aim to identify a biomarker for heart failure post-acute myocardial infarction. This observational study includes 1062 and 1043 patients with acute myocardial infarction in the discovery and validation cohorts, respectively. The outcomes are in-hospital and long-term heart failure events. S100A8/A9 is screened out through proteomic analysis, and elevated circulating S100A8/A9 is independently associated with heart failure in discovery and validation cohorts. Furthermore, the predictive value of S100A8/A9 is superior to the traditional biomarkers, and the addition of S100A8/A9 improves the risk estimation using traditional risk factors. We finally report causal effect of S100A8/A9 on heart failure in three independent cohorts using Mendelian randomization approach. Here, we show that S100A8/A9 is a predictor and potentially causal medicator for heart failure post-acute myocardial infarction
    • ā€¦
    corecore