32 research outputs found

    Experimental Study on Conductivity Anisotropy of Limestone Considering the Bedding Directional Effect in the Whole Process of Uniaxial Compression

    No full text
    Experimental studies were conducted on the changes of the potential differences in different directions during the uniaxial compression on limestone samples parallel and normal to the bedding plane. In the test, electric current was supplied at both ends of the samples, and concurrent measurement was conducted in four measuring lines at a 45-degree angle to each other. First, the change laws of the potential differences in different directions and the similarities and differences of rock samples were summarized. In regards to the uniaxial compression properties and crack growth, the above-mentioned similarities and differences were further analyzed. Then, the anisotropy factor was introduced to further explore the response characteristics. It was found that the anisotropic changes of rock samples went through three stages during the uniaxial compression process, providing a reference for describing the properties in different failure stages of rock samples and obtaining precursory information about the fracture. Besides, the relationship between the peak stress and initial potential difference in a direction normal to the current direction was obtained by means of data fitting, providing a new method of predicting the uniaxial compressive strength of rock samples. According to the preceding analysis, this paper studied rock anisotropy by considering the bedding directional effect in terms of conductivity and provided a reference for subsequent study on rock materials’ properties and engineering practices

    Automatic Approach for Fast Processing and Data Analysis of Seismic Ahead-Prospecting Method: A Case Study in Yunnan, China

    No full text
    The seismic ahead-prospecting method is useful to detect anomalous zones in front of the tunnel face. However, most existing seismic detection method is designed for drilling and blasting tunnel. The detection method should be improved to satisfy the rapid tunneling of Tunnel Boring Machines (TBMs). This study focuses on reducing the time spent on seismic data processing and result analysis. Therefore, to reduce the data processing time, an automatic initial model establishment method based on surrounding rock grade is proposed. To reduce the time spent on result analysis and avoid subjective judgment, a modified k-means++ method is adopted to interpret the detecting results and extracting anomalous zones. The efficacy of the developed method is demonstrated by field tests. The fractured zones such as cavity collapse and fissure are successfully predicted and identified

    Forward prediction for tunnel geology and classification of surrounding rock based on seismic wave velocity layered tomography

    No full text
    Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surrounding rock in front of the tunnel face. In this work, a forward-prediction method for tunnel geology and classification of surrounding rock is developed based on seismic wave velocity layered tomography. In particular, for the problem of strong multi-solution of wave velocity inversion caused by few ray paths in the narrow space of the tunnel, a layered inversion based on regularization is proposed. By reducing the inversion area of each iteration step and applying straight-line interface assumption, the convergence and accuracy of wave velocity inversion are effectively improved. Furthermore, a surrounding rock classification network based on autoencoder is constructed. The mapping relationship between wave velocity and classification of surrounding rock is established with density, Poisson's ratio and elastic modulus as links. Two numerical examples with geological conditions similar to that in the field tunnel and a field case study in an urban subway tunnel verify the potential of the proposed method for practical application

    The Electrical Resistivity and Acoustic Emission Response Law and Damage Evolution of Limestone in Brazilian Split Test

    No full text
    The Brazilian split test was performed on two groups of limestone samples with loading directions vertical and parallel to the bedding plane, and the response laws of the electrical resistivity and acoustic emission (AE) in the two loading modes were obtained. The test results showed that the Brazilian split test with loading directions vertical and parallel to the bedding showed obviously different results and anisotropic characteristics. On the basis of the response laws of the electrical resistivity and AE, the damage variables based on the electrical resistivity and AE properties were modified, and the evolution laws of the damage variables in the Brazilian split test with different loading directions were obtained. It was found that the damage evolution laws varied with the loading direction. Specifically, in the time-varying curve of the damage variable with the loading direction vertical to the bedding, the damage variable based on electrical resistivity properties showed an obvious damage weakening stage while that based on AE properties showed an abrupt increase under low load

    The Electrical Resistivity and Acoustic Emission Response Law and Damage Evolution of Limestone in Brazilian Split Test

    No full text
    The Brazilian split test was performed on two groups of limestone samples with loading directions vertical and parallel to the bedding plane, and the response laws of the electrical resistivity and acoustic emission (AE) in the two loading modes were obtained. The test results showed that the Brazilian split test with loading directions vertical and parallel to the bedding showed obviously different results and anisotropic characteristics. On the basis of the response laws of the electrical resistivity and AE, the damage variables based on the electrical resistivity and AE properties were modified, and the evolution laws of the damage variables in the Brazilian split test with different loading directions were obtained. It was found that the damage evolution laws varied with the loading direction. Specifically, in the time-varying curve of the damage variable with the loading direction vertical to the bedding, the damage variable based on electrical resistivity properties showed an obvious damage weakening stage while that based on AE properties showed an abrupt increase under low load

    Experimental Study on Conductivity Anisotropy of Limestone Considering the Bedding Directional Effect in the Whole Process of Uniaxial Compression

    No full text
    Experimental studies were conducted on the changes of the potential differences in different directions during the uniaxial compression on limestone samples parallel and normal to the bedding plane. In the test, electric current was supplied at both ends of the samples, and concurrent measurement was conducted in four measuring lines at a 45-degree angle to each other. First, the change laws of the potential differences in different directions and the similarities and differences of rock samples were summarized. In regards to the uniaxial compression properties and crack growth, the above-mentioned similarities and differences were further analyzed. Then, the anisotropy factor was introduced to further explore the response characteristics. It was found that the anisotropic changes of rock samples went through three stages during the uniaxial compression process, providing a reference for describing the properties in different failure stages of rock samples and obtaining precursory information about the fracture. Besides, the relationship between the peak stress and initial potential difference in a direction normal to the current direction was obtained by means of data fitting, providing a new method of predicting the uniaxial compressive strength of rock samples. According to the preceding analysis, this paper studied rock anisotropy by considering the bedding directional effect in terms of conductivity and provided a reference for subsequent study on rock materials’ properties and engineering practices

    Isolation and Identification of Volatile Substances with Attractive Effects on <i>Wohlfahrtia magnifica</i> from Vagina of Bactrian Camel

    No full text
    Vaginal myiasis is one of the most serious parasitic diseases in Bactrian camels. At present, there are no reports on biological control measures of the disease. In this paper, the metabolomic analysis of vaginal secretions from susceptible and non-susceptible camels was performed by ACQUITY UPLC H-Class Ultra Performance Liquid Chromatograph. The results matched in 140 vaginal compounds. Methylheptenone, 1-octen-3-ol, and propyl butyrate and their mixtures were selected for gas chromatography-electroantennography (GC-EAD), electroantennography (EAG), behavioral experiments and trapping experiments of Wohlfahrtia magnifica (W. magnifica). Results showed that the W. magnifica had EAG responses to the three compounds, respectively. The EAG responses of female flies to different concentrations of methylheptenone were significantly different, but to the others had no significant difference, and there was no significant difference in the same compounds between the different sexes. Behavioral and trapping experiments showed that methylheptenone and 1-octen-3-ol have significant attraction to W. magnifica, but there was no significant difference to propyl butyrate. When methylheptenone and 1-octen-3-ol were mixed in different proportions, it was found that a mixture at the ratio of 1:1 and 0.5:1 had extremely significant and significant attraction, respectively, to both male and female W. magnifica. The study showed that, except for propyl butyrate, the higher the concentrations of the other two compounds, the stronger the attractivity to the W. magnifica, and a mixture at the ratio of 1:1 could enhance the attractivity to the W. magnifica

    Seismic ahead-prospecting based on deep learning of retrieving seismic wavefield

    No full text
    Unknown geology ahead of the tunnel boring machine (TBM) brings a large safety risk for tunnel construction. Seismic ahead-prospecting using TBM drilling noise as a source can achieve near-real-time detection, meeting the requirements of TBM rapid drilling. Seismic wavefield retrieval is the key data processing step for the efficient utilization of TBM drilling noise. The traditional solution is based on cross-correlation to extract reflected waves, but the reference waves remain in the result, disturbing the imaging and interpretation of the adverse geology. To solve this problem, the deep learning method was introduced in wavefield retrieval to improve the accuracy of geological prospecting. We trained a deep neural network (DNN) with its strong nonlinear mapping capability to transform seismic data from TBM drilling noise to data from the active source. The issue lies in its features for this specific tunnel task, including the decay of the seismic signal with time and the incomplete spatial correspondence. Thus, we improved a classical DNN with the time constraint as an additional input, and an additional pre-decoder to enlarge the receptive field. Additionally, a loss function weighted by the ground truth and time constraint is improved to achieve an accurate retrieval of the effective signal, considering the little effective information in tunnel data. Finally, the workflow of the proposed method was given, and a dataset designed with reference to the field case was employed to train the network. The proposed method accurately retrieved the reflection signal with higher dominant frequencies, which helped improve the accuracy of imaging. Numerical simulations and imaging on typical geological models show that the proposed method can suppress reference waves and get more accurate results with fewer artifacts. The proposed method has been applied in the Gaoligongshan Tunnel and imaged two abnormal zones, providing meaningful geological information for TBM drilling and tunnel construction
    corecore