230 research outputs found

    Fatigue Reliability Assessment of Orthotropic Bridge Decks under Stochastic Truck Loading

    Get PDF
    A steady traffic growth has posed a threat to the fatigue safety of existing bridges. Uncertainties in traffic flows add to the challenge of an accurate fatigue safety assessment. This article utilizes a stochastic traffic load model to evaluate the fatigue reliability of orthotropic steel bridge decks. The traffic load model is simulated by site-specific weigh-in-motion measurements. A response surface method is presented to solve the time-consuming problem caused by hotspot stress simulations in the finite element model. Applications of the stochastic traffic load model for probabilistic modeling and fatigue reliability assessment are demonstrated in the case study of a steel box-girder bridge. Numerical results indicate that the growth rate of the gross vehicle weight leads to a rapid decrease of the fatigue reliability in comparison to the traffic volume growth. Even though the traffic volume growth is rapid, the control of overloaded trucks in comparison to the traffic volume is an effective way to ensure the fatigue safety of the steel bridges.National Basic Research Program of ChinaNational Science Foundation of ChinaKey Research Program in Civil Engineering from Changsha University of Science and Technolog

    WeSinger 2: Fully Parallel Singing Voice Synthesis via Multi-Singer Conditional Adversarial Training

    Full text link
    This paper aims to introduce a robust singing voice synthesis (SVS) system to produce very natural and realistic singing voices efficiently by leveraging the adversarial training strategy. On one hand, we designed simple but generic random area conditional discriminators to help supervise the acoustic model, which can effectively avoid the over-smoothed spectrogram prediction and improve the expressiveness of SVS. On the other hand, we subtly combined the spectrogram with the frame-level linearly-interpolated F0 sequence as the input for the neural vocoder, which is then optimized with the help of multiple adversarial conditional discriminators in the waveform domain and multi-scale distance functions in the frequency domain. The experimental results and ablation studies concluded that, compared with our previous auto-regressive work, our new system can produce high-quality singing voices efficiently by fine-tuning different singing datasets covering from several minutes to a few hours. A large number of synthesized songs with different timbres are available online https://zzw922cn.github.io/wesinger2 and we highly recommend readers to listen to them.Comment: accepted at ICASSP 202

    LE-SSL-MOS: Self-Supervised Learning MOS Prediction with Listener Enhancement

    Full text link
    Recently, researchers have shown an increasing interest in automatically predicting the subjective evaluation for speech synthesis systems. This prediction is a challenging task, especially on the out-of-domain test set. In this paper, we proposed a novel fusion model for MOS prediction that combines supervised and unsupervised approaches. In the supervised aspect, we developed an SSL-based predictor called LE-SSL-MOS. The LE-SSL-MOS utilizes pre-trained self-supervised learning models and further improves prediction accuracy by utilizing the opinion scores of each utterance in the listener enhancement branch. In the unsupervised aspect, two steps are contained: we fine-tuned the unit language model (ULM) using highly intelligible domain data to improve the correlation of an unsupervised metric - SpeechLMScore. Another is that we utilized ASR confidence as a new metric with the help of ensemble learning. To our knowledge, this is the first architecture that fuses supervised and unsupervised methods for MOS prediction. With these approaches, our experimental results on the VoiceMOS Challenge 2023 show that LE-SSL-MOS performs better than the baseline. Our fusion system achieved an absolute improvement of 13% over LE-SSL-MOS on the noisy and enhanced speech track. Our system ranked 1st and 2nd, respectively, in the French speech synthesis track and the challenge's noisy and enhanced speech track.Comment: accepted in IEEE-ASRU202

    X-ray Near Field Speckle: Implementation and Critical Analysis

    Get PDF
    We have implemented the newly-introduced, coherence-based technique of x-ray near-field speckle (XNFS) at 8-ID-I at the Advanced Photon Source. In the near field regime of high-brilliance synchrotron x-rays scattered from a sample of interest, it turns out, that, when the scattered radiation and the main beam both impinge upon an x-ray area detector, the measured intensity shows low-contrast speckles, resulting from interference between the incident and scattered beams. We built a micrometer-resolution XNFS detector with a high numerical aperture microscope objective and demonstrate its capability for studying static structures and dynamics at longer length scales than traditional far field x-ray scattering techniques. Specifically, we characterized the structure and dynamics of dilute silica and polystyrene colloidal samples. Our study reveals certain limitations of the XNFS technique, which we discuss.Comment: 53 pages, 16 figure

    High-Mobility and Bias-Stable Field-Effect Transistors Based on Lead-Free Formamidinium Tin Iodide Perovskites

    Get PDF
    Electronic devices based on tin halide perovskites often exhibit a poor operational stability. Here, we report an additive engineering strategy to realize high-performance and stable field-effect transistors (FETs) based on 3D formamidinium tin iodide (FASnI3) films. By comparatively studying the modification effects of two additives, i.e., phenethylammonium iodide and 4-fluorophenylethylammonium iodide via combined experimental and theoretical investigations, we unambiguously point out the general effects of phenethylammonium (PEA) and its fluorinated derivative (FPEA) in enhancing crystallization of FASnI3 films and the unique role of fluorination in reducing structural defects, suppressing oxidation of Sn2+ and blocking oxygen and water involved defect reactions. The optimized FPEA-modified FASnI3 FETs reach a record high field-effect mobility of 15.1 cm2/(V·s) while showing negligible hysteresis. The devices exhibit less than 10% and 3% current variation during over 2 h continuous bias stressing and 4200-cycle switching test, respectively, representing the best stability achieved so far for all Sn-based FETs.</p

    High-Mobility and Bias-Stable Field-Effect Transistors Based on Lead-Free Formamidinium Tin Iodide Perovskites

    Get PDF
    Electronic devices based on tin halide perovskites often exhibit a poor operational stability. Here, we report an additive engineering strategy to realize high-performance and stable field-effect transistors (FETs) based on 3D formamidinium tin iodide (FASnI3) films. By comparatively studying the modification effects of two additives, i.e., phenethylammonium iodide and 4-fluorophenylethylammonium iodide via combined experimental and theoretical investigations, we unambiguously point out the general effects of phenethylammonium (PEA) and its fluorinated derivative (FPEA) in enhancing crystallization of FASnI3 films and the unique role of fluorination in reducing structural defects, suppressing oxidation of Sn2+ and blocking oxygen and water involved defect reactions. The optimized FPEA-modified FASnI3 FETs reach a record high field-effect mobility of 15.1 cm2/(V·s) while showing negligible hysteresis. The devices exhibit less than 10% and 3% current variation during over 2 h continuous bias stressing and 4200-cycle switching test, respectively, representing the best stability achieved so far for all Sn-based FETs.</p

    Phase Modulation of (1T-2H)-MoSe2/TiC-C Shell/Core Arrays via Nitrogen Doping for Highly Efficient Hydrogen Evolution Reaction

    Get PDF
    Tailoring molybdenum selenide electrocatalysts with tunable phase and morphology is of great importance for advancement of hydrogen evolution reaction (HER). In this work, phase‐ and morphology‐modulated N‐doped MoSe2/TiC‐C shell/core arrays through a facile hydrothermal and postannealing treatment strategy are reported. Highly conductive TiC‐C nanorod arrays serve as the backbone for MoSe2 nanosheets to form high‐quality MoSe2/TiC‐C shell/core arrays. Impressively, continuous phase modulation of MoSe2 is realized on the MoSe2/TiC‐C arrays. Except for the pure 1T‐MoSe2 and 2H‐MoSe2, mixed (1T‐2H)‐MoSe2 nanosheets are achieved in the N‐MoSe2 by N doping and demonstrated by spherical aberration electron microscope. Plausible mechanism of phase transformation and different doping sites of N atom are proposed via theoretical calculation. The much smaller energy barrier, longer HSe bond length, and diminished bandgap endow N‐MoSe2/TiC‐C arrays with substantially superior HER performance compared to 1T and 2H phase counterparts. Impressively, the designed N‐MoSe2/TiC‐C arrays exhibit a low overpotential of 137 mV at a large current density of 100 mA cm−2, and a small Tafel slope of 32 mV dec−1. Our results pave the way to unravel the enhancement mechanism of HER on 2D transition metal dichalcogenides by N doping
    • 

    corecore