10 research outputs found

    Ultraprecision Diameter Measurement of Small Holes with Large Depth-To-Diameter Ratios Based on Spherical Scattering Electrical-Field Probing

    No full text
    In order to solve the difficulty of precision measurement of small hole diameters with large depth-to-diameter ratios, a new measurement method based on spherical scattering electrical-field probing (SSEP) was developed. A spherical scattering electrical field with identical sensing characteristics in arbitrary spatial directions was formed to convert the micro gap between the probing-ball and the part being measured into an electrical signal. 3D non-contact probing, nanometer resolution, and approximate point probing—which are key properties for high measurement precision and large measurable depth-to-diameter ratios—were achieved. A specially designed hole diameter measuring machine (HDMM) was developed, and key techniques, including laser interferometry for macro displacement measurement of the probe, multi-degree-of-freedom adjustment of hole attitude, and measurement process planning, are described. Experiments were carried out using the HDMM and a probing sensor with a ϕ3-mm probing ball and a 150-mm-long stylus to verify the performance of the probing sensor and the measuring machine. The experimental results indicate that the resolution of the probing sensor was as small as 1 nm, and the expanded uncertainty of measurement result was 0.2 μm (k = 2) when a ϕ20-mm ring gauge standard was measured

    Improving Low Frequency Isolation Performance of Optical Platforms Using Electromagnetic Active-Negative-Stiffness Method

    No full text
    To improve the low-frequency isolation performance of optical platforms, an electromagnetic active-negative-stiffness generator (EANSG) was proposed, using nano-resolution laser interferometry sensors to monitor the micro-vibration of an optical platform, and precision electromagnetic actuators integrated with a relative displacement feedback strategy to counteract the positive stiffness of pneumatic springs within a micro-vibration stroke, thereby producing high-static-low-dynamic stiffness characteristics. The effectiveness of the method was verified by both theoretical and experimental analyses. The experimental results show that the vertical natural frequency of the optical platform was reduced from 2.00 to 1.37 Hz, the root mean square of displacement was reduced from 1.28 to 0.69 μm, and the root mean square of velocity was reduced from 14.60 to 9.33 μm/s, proving that the proposed method can effectively enhance the low frequency isolation performance of optical platforms

    An Adaptive Multi-Population Approach for Sphericity Error Evaluation in the Manufacture of Hemispherical Shell Resonators

    No full text
    The performance of a hemispherical resonant gyroscope (HRG) is directly affected by the sphericity error of the thin-walled spherical shell of the hemispherical shell resonator (HSR). In the production process of the HSRs, high-speed, high-accuracy, and high-robustness requirements are necessary for evaluating sphericity errors. We designed a sphericity error evaluation method based on the minimum zone criterion with an adaptive number of subpopulations. The method utilizes the global optimal solution and the subpopulations’ optimal solution to guide the search, initializes the subpopulations through clustering, and dynamically eliminates inferior subpopulations. Simulation experiments demonstrate that the algorithm exhibits excellent evaluation accuracy when processing simulation datasets with different sphericity errors, radii, and numbers of sampling points. The uncertainty of the results reached the order of 10−9 mm. When processing up to 6000 simulation datasets, the algorithm’s solution deviation from the ideal sphericity error remained around −3 × 10−9 mm. And the sphericity error evaluation was completed within 1 s on average. Additionally, comparison experiments further confirmed the evaluation accuracy of the algorithm. In the HSR sample measurement experiments, our algorithm improved the sphericity error assessment accuracy of the HSR’s inner and outer contour sampling datasets by 17% and 4%, compared with the results given by the coordinate measuring machine. The experiment results demonstrated that the algorithm meets the requirements of sphericity error assessment in the manufacturing process of the HSRs and has the potential to be widely used in the future

    Analytical reconstructions of multiple source-translation computed tomography with extended field of views: a research study

    Full text link
    This paper is to investigate the high-quality analytical reconstructions of multiple source-translation computed tomography (mSTCT) under an extended field of view (FOV). Under the larger FOVs, the previously proposed backprojection filtration (BPF) algorithms for mSTCT, including D-BPF and S-BPF, make some intolerable errors in the image edges due to an unstable backprojection weighting factor and the half-scan mode, which deviates from the intention of mSTCT imaging. In this paper, to achieve reconstruction with as little error as possible under the extremely extended FOV, we propose two strategies, including deriving a no-weighting D-BPF (NWD-BPF) for mSTCT and introducing BPFs into a special full-scan mSTCT (F-mSTCT) to balance errors, i.e., abbreviated as FD-BPF and FS-BPF. For the first strategy, we eliminate this unstable backprojection weighting factor by introducing a special variable relationship in D-BPF. For the second strategy, we combine the F-mSTCT geometry with BPFs to study the performance and derive a suitable redundant weighting function for F-mSTCT. The experiments demonstrate our proposed methods for these strategies. Among them, NWD-BPF can weaken the instability at the image edges but blur the details, and FS-BPF can get high-quality stable images under the extremely extended FOV imaging a large object but requires more projections than FD-BPF. For different practical requirements in extending FOV imaging, we give suggestions on algorithm selection.Comment: The content of this paper needs to be significantly adjusted, and the content that avoids backprojection weighting factors needs to be removed. In addition, there are many issues with improper expression. Therefore, we apply to withdraw the paper and revise it for re uploadin

    Quantitative Investigation of Surface Charge Distribution and Point Probing Characteristics of Spherical Scattering Electrical Field Probe for Precision Measurement of Miniature Internal Structures with High Aspect Ratios

    No full text
    For precision measurement of miniature internal structures with high aspect ratios, a spherical scattering electrical field probe (SSEP) is proposed based on charge signal detection. The characteristics and laws governing surface charge distribution on the probing ball of the SSEP are analyzed, with the spherical scattering electrical field modeled using a 3D seven-point finite difference method. The model is validated with finite element simulation by comparing with the analysis results of typical situations, in which probing balls of different diameters are used to probe a grounded plane with a probing gap of 0.3 μm. Results obtained with the proposed model and finite element method (FEM) simulation indicate that 31% of the total surface charge on a ϕ1 mm probing ball concentrates in an area that occupies 1% of the total probing ball surface. Moreover, this surface charge concentration remains unchanged when the surface being measured varies in geometry, or when the probing gap varies in sensing range. Based on this, the SSEP has realized approximate point probing capability with a virtual “needle” of electrical effect. Together with its non-contact sensing characteristics and 3D isotropy, it can, therefore, be concluded that the SSEP has great potential to be an ideal solution for precision measurement of miniature internal structures with high aspect ratios
    corecore