536 research outputs found

    Stabilized Nearest Neighbor Classifier and Its Statistical Properties

    Full text link
    The stability of statistical analysis is an important indicator for reproducibility, which is one main principle of scientific method. It entails that similar statistical conclusions can be reached based on independent samples from the same underlying population. In this paper, we introduce a general measure of classification instability (CIS) to quantify the sampling variability of the prediction made by a classification method. Interestingly, the asymptotic CIS of any weighted nearest neighbor classifier turns out to be proportional to the Euclidean norm of its weight vector. Based on this concise form, we propose a stabilized nearest neighbor (SNN) classifier, which distinguishes itself from other nearest neighbor classifiers, by taking the stability into consideration. In theory, we prove that SNN attains the minimax optimal convergence rate in risk, and a sharp convergence rate in CIS. The latter rate result is established for general plug-in classifiers under a low-noise condition. Extensive simulated and real examples demonstrate that SNN achieves a considerable improvement in CIS over existing nearest neighbor classifiers, with comparable classification accuracy. We implement the algorithm in a publicly available R package snn.Comment: 48 Pages, 11 Figures. To Appear in JASA--T&

    On Reject and Refine Options in Multicategory Classification

    Full text link
    In many real applications of statistical learning, a decision made from misclassification can be too costly to afford; in this case, a reject option, which defers the decision until further investigation is conducted, is often preferred. In recent years, there has been much development for binary classification with a reject option. Yet, little progress has been made for the multicategory case. In this article, we propose margin-based multicategory classification methods with a reject option. In addition, and more importantly, we introduce a new and unique refine option for the multicategory problem, where the class of an observation is predicted to be from a set of class labels, whose cardinality is not necessarily one. The main advantage of both options lies in their capacity of identifying error-prone observations. Moreover, the refine option can provide more constructive information for classification by effectively ruling out implausible classes. Efficient implementations have been developed for the proposed methods. On the theoretical side, we offer a novel statistical learning theory and show a fast convergence rate of the excess β„“\ell-risk of our methods with emphasis on diverging dimensionality and number of classes. The results can be further improved under a low noise assumption. A set of comprehensive simulation and real data studies has shown the usefulness of the new learning tools compared to regular multicategory classifiers. Detailed proofs of theorems and extended numerical results are included in the supplemental materials available online.Comment: A revised version of this paper was accepted for publication in the Journal of the American Statistical Association Theory and Methods Section. 52 pages, 6 figure
    • …
    corecore