182 research outputs found

    C2\mathbf{C}^2Former: Calibrated and Complementary Transformer for RGB-Infrared Object Detection

    Full text link
    Object detection on visible (RGB) and infrared (IR) images, as an emerging solution to facilitate robust detection for around-the-clock applications, has received extensive attention in recent years. With the help of IR images, object detectors have been more reliable and robust in practical applications by using RGB-IR combined information. However, existing methods still suffer from modality miscalibration and fusion imprecision problems. Since transformer has the powerful capability to model the pairwise correlations between different features, in this paper, we propose a novel Calibrated and Complementary Transformer called C2\mathrm{C}^2Former to address these two problems simultaneously. In C2\mathrm{C}^2Former, we design an Inter-modality Cross-Attention (ICA) module to obtain the calibrated and complementary features by learning the cross-attention relationship between the RGB and IR modality. To reduce the computational cost caused by computing the global attention in ICA, an Adaptive Feature Sampling (AFS) module is introduced to decrease the dimension of feature maps. Because C2\mathrm{C}^2Former performs in the feature domain, it can be embedded into existed RGB-IR object detectors via the backbone network. Thus, one single-stage and one two-stage object detector both incorporating our C2\mathrm{C}^2Former are constructed to evaluate its effectiveness and versatility. With extensive experiments on the DroneVehicle and KAIST RGB-IR datasets, we verify that our method can fully utilize the RGB-IR complementary information and achieve robust detection results. The code is available at https://github.com/yuanmaoxun/Calibrated-and-Complementary-Transformer-for-RGB-Infrared-Object-Detection.git

    Channel Adaptive DL based Joint Source-Channel Coding without A Prior Knowledge

    Full text link
    Significant progress has been made in wireless Joint Source-Channel Coding (JSCC) using deep learning techniques. The latest DL-based image JSCC methods have demonstrated exceptional performance across various signal-to-noise ratio (SNR) levels during transmission, while also avoiding cliff effects. However, current channel adaptive JSCC methods rely heavily on channel prior knowledge, which can lead to performance degradation in practical applications due to channel mismatch effects. This paper proposes a novel approach for image transmission, called Channel Blind Joint Source-Channel Coding (CBJSCC). CBJSCC utilizes Deep Learning techniques to achieve exceptional performance across various signal-to-noise ratio (SNR) levels during transmission, without relying on channel prior information. We have designed an Inverted Residual Attention Bottleneck (IRAB) module for the model, which can effectively reduce the number of parameters while expanding the receptive field. In addition, we have incorporated a convolution and self-attention mixed encoding module to establish long-range dependency relationships between channel symbols. Our experiments have shown that CBJSCC outperforms existing channel adaptive DL-based JSCC methods that rely on feedback information. Furthermore, we found that channel estimation does not significantly benefit CBJSCC, which provides insights for the future design of DL-based JSCC methods. The reliability of the proposed method is further demonstrated through an analysis of the model bottleneck and its adaptability to different domains, as shown by our experiments

    Precise Orbit and Clock Products of Galileo, BDS and QZSS from MGEX Since 2018: Comparison and PPP Validation

    Get PDF
    In recent years, the development of new constellations including Galileo, BeiDou Navigation Satellite System (BDS) and Quasi-Zenith Satellite System (QZSS) have undergone dramatic changes. Since January 2018, about 30 satellites of the new constellations have been launched and most of the new satellites have been included in the precise orbit and clock products provided by the Multi Global Navigation Satellite System (Multi-GNSS) Experiment (MGEX). Meanwhile, critical issues including antenna parameters, yaw-attitude models and solar radiation pressure models have been continuously refined for these new constellations and updated into precise MGEX orbit determination and precise clock estimation solutions. In this context, MGEX products since 2018 are herein assessed by orbit and clock comparisons among individual analysis centers (ACs), satellite laser ranging (SLR) validation and precise point positioning (PPP) solutions. Orbit comparisons showed 3D agreements of 3–5 cm for Galileo, 8–9 cm for BDS-2 inclined geosynchronous orbit (IGSO), 12–18 cm for BDS-2 medium earth orbit (MEO) satellites, 24 cm for BDS-3 MEO and 11–16 cm for QZSS IGSO satellites. SLR validations demonstrated an orbit accuracy of about 3–4 cm for Galileo and BDS-2 MEO, 5–6 cm for BDS-2 IGSO, 4–6 cm for BDS-3 MEO and 5–10 cm for QZSS IGSO satellites. Clock products from different ACs generally had a consistency of 0.1–0.3 ns for Galileo, 0.2–0.5 ns for BDS IGSO/MEO and 0.2–0.4 ns for QZSS satellites. The positioning errors of kinematic PPP in Galileo-only mode were about 17–19 mm in the north, 13–16 mm in the east and 74–81 mm in the up direction, respectively. As for BDS-only PPP, positioning accuracies of about 14, 14 and 49 mm could be achieved in kinematic mode with products from Wuhan University applied
    • …
    corecore