32 research outputs found

    Removal Ability of Bacillus licheniformis on Waxy Cuticle on Wheat Straw Surface

    No full text
    The outermost surface of wheat straw (WS) is covered with hydrophobic lipophilic extracts and silica, which affects follow-up processes such as impregnation pretreatment of pulping and papermaking. In this study, a strain named Bacillus licheniformis (B. licheniformis) was screened from the black liquor of papermaking, which was used to explore the effect of its treatment on the waxy cuticle of WS. Scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) showed that the B. licheniformis had a certain destructive effect on the outer surface of WS and the content of Si on the outer surface decreased by 80%. The results of FTIR and X-ray photoelectron spectroscopy (XPS) displayed that the wax composition on the outer surface of WS decreased and the fiber structure inside appeared. The mechanical properties of paper demonstrated that the treated WS is still feasible in this field and the content of Si in the black liquor is reduced by 33%. Therefore, the WS treated by B. licheniformis can destroy the waxy cuticle on its outer surface and improve the wettability of WS. It provides a new idea to alleviate the “Si interference” problem of alkali recovery in WS traditional pulping and papermaking

    Removal Ability of <i>Bacillus licheniformis</i> on Waxy Cuticle on Wheat Straw Surface

    No full text
    The outermost surface of wheat straw (WS) is covered with hydrophobic lipophilic extracts and silica, which affects follow-up processes such as impregnation pretreatment of pulping and papermaking. In this study, a strain named Bacillus licheniformis (B. licheniformis) was screened from the black liquor of papermaking, which was used to explore the effect of its treatment on the waxy cuticle of WS. Scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) showed that the B. licheniformis had a certain destructive effect on the outer surface of WS and the content of Si on the outer surface decreased by 80%. The results of FTIR and X-ray photoelectron spectroscopy (XPS) displayed that the wax composition on the outer surface of WS decreased and the fiber structure inside appeared. The mechanical properties of paper demonstrated that the treated WS is still feasible in this field and the content of Si in the black liquor is reduced by 33%. Therefore, the WS treated by B. licheniformis can destroy the waxy cuticle on its outer surface and improve the wettability of WS. It provides a new idea to alleviate the “Si interference” problem of alkali recovery in WS traditional pulping and papermaking

    Fabrication Mechanisms of Lignin Nanoparticles and Their Ultraviolet Protection Ability in PVA Composite Film

    No full text
    Lignin is an indispensable and essential compound present in plants. It is a renewable resource and a green alternative to traditional petroleum energy. The rational utilization of lignin can reduce the environmental damage caused by traditional industrial development. The preparation of lignin nanoparticles (LNPs) using the self-assembly method is one of the most favorable ways to achieve high value-added utilization of lignin. However, the process requires an in-depth understanding of the sphere-forming mechanism of lignin self-assembly and the interaction of self-assembly forces. We used the same raw materials and two different preparation methods to prepare LNPs. The results revealed that the variation in the order of the dropwise addition of lignin solution and deionized water produced LNPs with varying average sizes. The sphere-forming mechanisms of the two kinds of lignin nanoparticles were discussed for the preparation of UV-resistant polyvinyl alcohol (PVA) polymeric films. During lignin spherification, the faster the solution reaches the supersaturation state, the faster the spherogenesis rate is, the smaller the size is, and the narrower the particle size distribution is. The lignin micro/nanospheres are produced by exploiting the π–π bonding interactions in lignin itself. The lignin micro/nanospheres are then mixed with PVA to form a film to obtain a lignin–PVA composite film material with an anti-UV effect

    Kinetics of Viscosity Decrease by Cellulase Treatment of Bleached Hardwood Kraft-Based Dissolving Pulp

    No full text
    A dissolving pulp of low cellulose viscosity represents a pulp of high quality; hence, it is often necessary to decrease the initial dissolving pulp viscosity. One so-called environmentally friendly approach to further reducing the dissolving pulp viscosity is to treat the dissolving pulp with cellulase enzymes. In this study, the kinetics of the decrease in cellulose viscosity during a cellulase treatment was investigated. The study showed that the kinetics of the cellulose degradation during a cellulase treatment can be divided into at least two phases, where the initial phase is very fast and the final phase is very slow. The kinetic two-phase model for the viscosity degradation that has been developed in this project can be used to predict and control the final pulp viscosity of dissolving pulps

    Dilute Sulfuric Acid Hydrolysis of Pennisetum (sp.) Hemicellulose

    Get PDF
    Dilute sulfuric acid hydrolysis of Pennisetum (sp.) hemicellulose was investigated in this work. The hemicellulose was obtained by ethanol precipitation of hydrolysate produced via the microwave-assisted H2O2-NaOH extraction from the Pennisetum (sp.). Acid hydrolysis was performed by varying the process parameters, including the sulfuric acid concentration, hydrolysis temperature, solid to liquor ratio, and the reaction time. The xylose yield was selected as the target of process optimization and the orthogonal experiment of L9 (34) was designed to optimize the process conditions. The highest xylose yield of 86.5% could be obtained under the conditions of an acid concentration of 1%, the hydrolysis temperature of 105 °C, a solid to liquor ratio of 1:15, and a reaction time of 4 h. Fourier transform infrared spectroscopy (FTIR) analysis confirmed that most of the hemicellulose had been depolymerized into xylose

    Boosting Oxygen Delignification of Poplar Kraft Pulp by Xylanase Pretreatment

    No full text
    Enhancement of oxygen delignification is critical to improve subsequent bleaching efficiency while being environmentally compatible. In the present study, xylanase was used to improve the delignification process of poplar kraft pulp. Results showed that the kappa number reduction ratio (KRR) of 14.5% was achieved for the pulp under xylanase-assisted oxygen delignification processes when compared to the control without xylanase treatment. Other pulp properties, such as intrinsic viscosity and brightness, also improved somewhat; i.e., viscosity increased by 28 mL/g units and ISO brightness increased 1.4% points. Furthermore, 31P-NMR was employed to characterize the chemical structure of the residual lignin of the pulps before and after oxygen delignification. It showed that the condensed phenolic and syringyl hydroxyl groups decreased significantly for the xylanase-assisted oxygen-delignified pulps

    Wet Oxidation Pretreatment of Wood Pulp Waste for Enhancing Enzymatic Saccharification

    No full text
    Effective pretreatment of wood pulp waste is important for enhancing enzymatic saccharification. For this reason, wet oxidation process conditions were considered with the hypothesis that the alkaline oxygen conditions would favor delignification and hydrolysis of lignocellulose. Enzymatic saccharification was greatly improved to 42.9% in terms of reducing sugar yield under the conditions of pH = 10, oxygen pressure = 1.2 MPa, time = 15 min, and temperature = 195 °C. A total of 39% of lignin and 73% of hemicellulose were removed and dissolved into the hydrolyzate. Furthermore, the chemical structure, crystallinity, and morphology of the treated substrate were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM)

    Facile Preparation and Functionalization of Cellulose Microgels and their Properties and Application in Stabilizing O/W Emulsions

    No full text
    The preparation and functionalization of cellulose microgels (CMGs) has been presented. Only a trace concentration of CMGs (< 0.2 wt.%) stabilized oil-in-water (O/W) emulsions and produced high internal phase emulsions (HIPE). The size and morphology of the CMGs were characterized with dynamic light scattering (DLS) and atomic force microscopy (AFM), and the structural properties were discussed. Based on the experimental results, the correlation between the amphiphilicity, and adsorption of the CMGs, and their capability to stabilize the emulsions, which are closely related to the cross-linking density of the CMGs, were elaborated. Having a porous percolating structure and being rich in free hydroxyl groups, the CMGs were functionalized by Fe3O4. The unique dispersibility of the Fe3O4-CMGs and their ability to stabilize the emulsions were investigated in detail. The results pave the way to a deeper understanding of Pickering emulsions stabilized by soft solvent-swollen materials and are expected to further expand the application of cellulose

    Fabrication and Characterization of Transparent and Uniform Cellulose/Polyethylene Composite Films from Used Disposable Paper Cups by the “One-Pot Method”

    No full text
    Disposable paper cups are usually composed of high-grade paper board and an inner polyethylene coatings and are extensively used in daily life. However, most disposable paper cups are only used for a short time and then incinerated or accumulated in landfill at the end of their service due to the difficulty in separating the components, leading to a serious threat to our ecosystem. Therefore, developing a facile and green method to recycle and reuse disposable paper cups is vital. By using ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as a solvent, transparent and homogenous cellulose/polyethylene composite films were successfully prepared from used bamboo-based disposable paper cups through the “one-pot method”, without any pre-treatment. It was found that there was a transformation of cellulose I to II after the dissolution and regeneration processes, and the crystallinity degree of the regenerated cellulose-based materials decreased significantly, resulting in a change in thermal properties. Meanwhile, compared to traditional pure cellulose films, the composite films possessed good UV-shielding properties and hydrophobicity. Moreover, they also displayed good mechanical properties. Additionally, the size of the ground PE coatings displayed obvious effects on the structures and properties of the composite films, where the CPE100 (sieved with 100–200 mesh) possessed the most homogeneous texture and the highest tensile strength (82 Mpa), higher than that of commercial polyethylene film (9–12 MPa), showing superiority as packaging or wrapping materials. Consequently, the goals to fabricate uniform cellulose/polyethylene composite films and valorize the solid waste from disposable paper cups were simultaneously achieved by a facile and green “one-pot method”

    Preparation and Characterization of Size-Controlled Lignin Nanoparticles with Deep Eutectic Solvents by Nanoprecipitation

    No full text
    Lignin nanomaterials have wide application prospects in the fields of cosmetics delivery, energy storage, and environmental governance. In this study, we developed a simple and sustainable synthesis approach to produce uniform lignin nanoparticles (LNPs) by dissolving industrial lignin in deep eutectic solvents (DESs) followed by a self-assembling process. LNPs with high yield could be obtained through nanoprecipitation. The LNPs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). Distinct LNPs could be produced by changing the type of DES, lignin sources, pre-dropping lignin concentration, and the pH of the system. Their diameter is in the range of 20&ndash;200 nm and they show excellent dispersibility and superior long-term stability. The method of preparing LNPs from lignin&ndash;DES with water as an anti-solvent is simple, rapid, and environmentally friendly. The outcome aids to further the advancement of lignin-based nanotechnology
    corecore