25 research outputs found

    Strength characteristics and failure behavior of ubiquitous-joint rock-like specimens under compressive-shear stress: experimental study and digital speckle correlation method

    Get PDF
    In nature, rock mass is subjected to compression-shear effect, so it is very important to study the failure mode and mechanical properties of fractured rock mass under compression-shear effect. In order to study the influence of joint inclination on strength characteristics and failure modes of rock mass under different compression-shear angles, a series of compression-shear tests were carried out. The specimens are made of a certain proportion of fine sand, cement and water. The joints are prefabricated by inserting mica sheets and the inclination angle of joints is 0°, 15°, 30°, 45°, 60°, 75°, 90°. Digital speckle correlation method is used to analyze the strain field of the specimen during the whole loading process. The specimens are speckled on the opposite side before the experiment. In the experiment, the front and back sides of the specimen are monitored by the camera, and the images are analyzed after the experiment. The result shows that: 1) The peak shear strength of specimens mainly increases with the increase of joint inclination angle; 2) The weakening degree of shear strength caused by joint inclination angle of specimens tends to increase as the compression-stress ratio increases; and 3) The failure modes can be classified into four types: coplanar shear failure mode, inclined shear failure mode, quasi-complete shear failure mode and step shear failure mode. The digital speckle strain images better prove the failure modes obtained from the experiment

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Numerical Analysis of Meshing of Loaded Misaligned Straight Bevel Gear Drives of Automobile Differential

    No full text
    The main purpose of this paper is to analyze the influence of different types of alignment errors on the meshing performance of loaded straight bevel gears. Based on 3D finite element models of the specific loaded assembling straight bevel gear pair, the contact area, transmission error, vibration and noise for the specific loaded straight bevel gear are investigated. The results show that the alignment errors have different degrees of adverse effects on the contact area and the contact line of the straight bevel gear pair, which can affect the transmission error, vibration, and noise of the straight bevel gear drives. The results also demonstrate that the most dangerous type of combined alignment errors is ΔP, ΔG, ΔE 0 and Δγ. The results of this research can provide theoretical guidelines for the assembly and modification of straight bevel gears

    Inferring the seasonal origins of the plant (Cinnamomum camphora) and soil water from precipitation by stable isotope techniques in the East Asian monsoon region

    No full text
    Study region: From 2017 to 2019, xylem and leaf samples of Cinnamomum camphora were sampled and soil water samples at 0–100 cm depth were sampled 65 times simultaneously in a typical East Asian monsoon region. Study focus: The seasonal origin of plant and soil water from precipitation was inferred based on the stable isotope techniques, including the evaporation line slope (SEL) estimations and the seasonal origin index (SOI) calculation. New hydrological insights for the region: The regression SEL of leaf water was close to the theoretical SELs estimated based on the Craig–Gordon model, but xylem water and soil water showed higher regression SELs than the theoretical SELs, this may be due to the seasonality of the precipitation isotopes and evaporative fractionation. The fractionation-compensated isotopic values calculated based on the theoretical SELs of different water types were close, with the differences within 2.4‰ for δ18O and 20.0‰ for δ2H of each other, and the uncertainty of the fractionation-compensated isotopic values was low enough in the calculation of SOI. The SOI results showed that summer precipitation was more prevalent in plant and soil water, and more winter precipitation may recharge runoff when evapotranspiration demand is weak. Overall, the leaf sampling and the theoretical method have the potential to infer the seasonal water origin over a relatively long period

    Plasma-Derived Exosomal Circular RNA hsa_circ_0005540 as a Novel Diagnostic Biomarker for Coronary Artery Disease

    No full text
    Background. Exosomes exist in almost all body fluid and contain diverse biological contents which may be reflective of disease state. Circular RNAs (circRNAs) are stable in structure and have a long half-life in exosomes without degradation, thus making them reliable biomarkers. However, the potential of exosomal circRNAs as biomarkers of coronary artery disease (CAD) remains to be established. Here, we aimed to investigate the expression levels and the potential use of exosomal circRNAs as diagnostic biomarkers for CAD. Methods. CircRNA expression levels in exosomes obtained from three plasma samples of CAD patients and three paired controls were analyzed using RNA sequencing. Exosomal circRNAs obtained in the profiling phase were then verified in two-center validation cohorts. Finally, the ability of exosomal circRNAs, adjusting for Framingham Heart Study (FHS) risk factors, was determined to discriminate between CAD patients and non-CAD controls. Results. 355 circRNAs were differentially expressed between these two groups: 164 were upregulated, and 191 were downregulated. Here, we selected the potential circRNAs (fold change>4, P<0.05) as candidate biomarkers for further validation. Our data showed that only hsa_circ_0005540 was significantly associated with CAD (P<0.0001). After adjustment for risk factors, hsa_circ_0005540 showed a high discriminatory power for CAD in ROC analyses (AUC=0.853; 95%confidence interval CI=0.799−0.906, P<0.001). Conclusion. Our results suggest that plasma exosomal hsa_circ_0005540 can be used as a promising diagnostic biomarker of CAD

    The Impact of tagSNPs in CXCL16 Gene on the Risk of Myocardial Infarction in a Chinese Han Population

    No full text
    CXCL16 has been demonstrated to be involved in the development of atherosclerosis and myocardial infarction (MI). Nonetheless, the role of the CXCL16 polymorphisms on MI pathogenesis is far to be elucidated. We herein genotyped four tagSNPs in CXCL16 gene (rs2304973, rs1050998, rs3744700, and rs8123) in 275 MI patients and 670 control subjects, aimed at probing into the impact of CXCL16 polymorphisms on individual susceptibility to MI. Multivariate logistic regression analysis showed that C allele (OR = 1.31, 95% CI = 1.03–1.66, and P=0.029) and CC genotype (OR = 1.84, 95% CI = 1.11–3.06, and P=0.018) of rs1050998 were associated with increased MI risk; and C allele (OR = 0.77, 95% CI = 0.60–0.98, and P=0.036) of rs8123 exhibited decreased MI risk, while the other two tagSNPs had no significant effect. Consistently, the haplotype rs2304973T-rs1050998C-rs3744700G-rs8123A containing the C allele of rs1050998 and A allele of rs8123 exhibited elevated MI risk (OR = 1.41, 95% CI = 1.02–1.96, and P=0.037). Further stratified analysis unveiled a more apparent association with MI risk among younger subjects (≤60 years old). Taken together, our results provided the first evidence that CXCL16 polymorphisms significantly impacted MI risk in Chinese subjects

    The association between pre-miR-27a rs895819 polymorphism and myocardial infarction risk in a Chinese Han population

    No full text
    Abstract Background Accumulating evidences have shown that miRNAs are directly or indirectly involved in a variety of biological processes, and closely associated with diverse human diseases, including cardiovascular diseases. SNPs locating within pri/pre-miRNA can affect miRNA processing and binding ability of target genes. MiR-27a, miR-26a-1 miR-100, miR-126 and miR-218 were reported to be associated with pathogenesis of myocardial infarction (MI). Here we aimed to evaluate the potential association of five polymorphisms in these pri/pre-miRNAs with individual susceptibility to MI in a Chinese Han population. Methods Genotyping was performed in 287 MI cases and 646 control subjects using polymerase chain reaction-ligase detection reaction (PCR-LDR) method. The association of these SNPs with MI risk was performed with SPSS software. Results In a logistic regression analysis, we found that AG heterozygote (OR = 0.40, 95% CI = 0.21-0.76, Pa = 0.005) or AA homozygote (OR = 0.40, 95% CI = 0.22-0.75, Pa = 0.004) of pre-miR-27a rs895819 had a reduced susceptibility to MI in comparison with GG homozygote. Similarly, a reduced risk of MI was detected when the AG and AA genotypes were combined (OR = 0.40, 95% CI = 0.22-0.74, Pa = 0.003). However, no significant association between pri-miR-26a-1 pri-miR-100, pri-miR-126 and pri-miR-218 polymorphisms and MI risk was observed under the allelic and established genetic models. Further stratified analysis of pre-miR-27a rs895819 revealed a more significant association of AG + AA genotypes with MI risk among younger, male and smoking subjects. Interestingly, AG and AA genotypes of the rs895819 polymorphism conferred about 0.17 mmol/L and 0.18 mmol/L increase in HDL-C levels compared to GG genotype. Conclusions Our findings suggest that the pre-miR-27a rs895819 polymorphism is associated with MI susceptibility in the Chinese Han population, which probably due to influence the HDL-C levels

    MicroRNA transcriptome analysis identifies miR-365 as a novel negative regulator of cell proliferation in Zmpste24-deficient mouse embryonic fibroblasts

    No full text
    Zmpste24 is a metalloproteinase responsible for the posttranslational processing and cleavage of prelamin A into mature laminA. Zmpste24(-/-) mice display a range of progeroid phenotypes overlapping with mice expressing progerin, an altered version of lamin A associated with Hutchinson-Gilford progeria syndrome (HGPS). Increasing evidence has demonstrated that miRNAs contribute to the regulation of normal aging process, but their roles in progeroid disorders remain poorly understood. Here we report the miRNA transcriptomes of mouse embryonic fibroblasts (MEFs) established from wild type (WT) and Zmpste24(-/-) progeroid mice using a massively parallel sequencing technology. With data from 19.5 × 10(6) reads from WT MEFs and 16.5 × 10(6) reads from Zmpste24(-/-) MEFs, we discovered a total of 306 known miRNAs expressed in MEFs with a wide dynamic range of read counts ranging from 10 to over 1 million. A total of 8 miRNAs were found to be significantly down-regulated, with only 2 miRNAs upregulated, in Zmpste24(-/-) MEFs as compared to WT MEFs. Functional studies revealed that miR-365, a significantly down-regulated miRNA in Zmpste24(-/-) MEFs, modulates cellular growth phenotypes in MEFs. Overexpression of miR-365 in Zmpste24(-/-) MEFs increased cellular proliferation and decreased the percentage of SA-β-gal-positive cells, while inhibition of miR-365 function led to an increase of SA-β-gal-positive cells in WT MEFs. Furthermore, we identified Rasd1, a member of the Ras superfamily of small GTPases, as a functional target of miR-365. While expression of miR-365 suppressed Rasd1 3' UTR luciferase-reporter activity, this effect was lost with mutations in the putative 3' UTR target-site. Consistently, expression levels of miR-365 were found to inversely correlate with endogenous Rasd1 levels. These findings suggest that miR-365 is down-regulated in Zmpste24(-/-) MEFs and acts as a novel negative regulator of Rasd1. Our comprehensive miRNA data provide a resource to study gene regulatory networks in MEFs
    corecore