214 research outputs found

    Genetic Ablation of CD68 Results in Mice with Increased Bone and Dysfunctional Osteoclasts

    Get PDF
    CD68 is a member of the lysosome associated membrane protein (LAMP) family that is restricted in its expression to cells of the monocyte/macrophage lineage. This lineage restriction includes osteoclasts, and, while previous studies of CD68 in macrophages and dendritic cells have proposed roles in lipid metabolism, phagocytosis, and antigen presentation, the expression and function of CD68 in osteoclasts have not been explored. In this study, we investigated the expression and localization of CD68 in macrophages and osteoclasts in response to the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of NF-κB ligand (RANKL). We found that M-CSF stimulates CD68 expression and RANKL alters the apparent molecular weight of CD68 as measured by Western immunoblotting. In addition, we explored the significance of CD68 expression in osteoclasts by generating mice that lack expression of CD68. These mice have increased trabecular bone, and in vitro assessment of CD68−/− osteoclasts revealed that, in the absence of CD68, osteoclasts demonstrate an accumulation of intracellular vesicle-like structures, and do not efficiently resorb bone. These findings demonstrate a role for CD68 in the function of osteoclasts, and future studies will determine the mechanistic nature of the defects seen in CD68−/− osteoclasts

    Prediction and Identification of Potential Immunodominant Epitopes in Glycoproteins B, C, E, G, and I of Herpes Simplex Virus Type 2

    Get PDF
    Twenty B candidate epitopes of glycoproteins B (gB2), C (gC2), E (gE2), G (gG2), and I (gI2) of herpes simplex virus type 2 (HSV-2) were predicted using DNAstar, Biosun, and Antheprot methods combined with the polynomial method. Subsequently, the biological functions of the peptides were tested via experiments in vitro. Among the 20 epitope peptides, 17 could react with the antisera to the corresponding parent proteins in the EIA tests. In particular, five peptides, namely, gB2466–473 (EQDRKPRN), gC2216–223 (GRTDRPSA), gE2483–491 (DPPERPDSP), gG2572–579 (EPPDDDDS), and gI2286-295 (CRRRYRRPRG) had strong reaction with the antisera. All conjugates of the five peptides with the carrier protein BSA could stimulate mice into producing antibodies. The antisera to these peptides reacted strongly with the corresponding parent glycoproteins during the Western Blot tests, and the peptides reacted strongly with the antibodies against the parent glycoproteins during the EIA tests. The antisera against the five peptides could neutralize HSV-2 infection in vitro, which has not been reported until now. These results suggest that the immunodominant epitopes screened using software algorithms may be used for virus diagnosis and vaccine design against HSV-2

    In Situ Structural Characterization of a Recombinant Protein in Native Escherichia coli Membranes with Solid-State Magic-Angle-Spinning NMR

    Get PDF
    The feasibility of using solid-state MAS NMR for in situ structural characterization of the LR11 (sorLA) transmembrane domain in native Escherichia coli (E. coli) membranes is presented. LR11 interacts with the human amyloid precursor protein (APP), a central player in the pathology of Alzheimer's disease. The background signals from E. coli lipids and membrane proteins had only minor effects on LR11 TM resonances. Approximately 50% of the LR11 TM residues were assigned by using 13C PARIS data. These assignments allow comparisons of the secondary structure of LR11 TM in native membrane environments and in commonly used membrane mimics (e.g. micelles). In situ spectroscopy bypasses several obstacles in the preparation of membrane proteins for structural analysis, and offers an opportunity to investigate the consequences of membrane heterogeneity, bilayer asymmetry, chemical gradients, and macromolecular crowding on the protein structure

    Efficacy and safety of immunotherapy combined with single-agent chemotherapy as second- or later-line therapy for metastatic non-small cell lung cancer

    Get PDF
    ObjectiveThis study sought to assess the efficacy and safety of immunotherapy combined with single-agent chemotherapy as a second- or later-line setting for metastatic non-small cell lung cancer (NSCLC) and to provide clinical evidence for this treatment regimen. The predictive value of extracellular vesicle (EV) membrane proteins was explored in patients who underwent this treatment.MethodsClinical data from patients diagnosed with metastatic NSCLC who received immunotherapy plus single-agent chemotherapy as a second- or later-line setting were retrospectively collected between March 2019 and January 2022. A total of 30 patients met the inclusion criteria, and all were pathologically confirmed to have NSCLC. Short-term efficacy, progression-free survival (PFS), EV markers for response prediction, and adverse events were assessed.ResultsEfficacy data were available for all 30 patients and included a partial response in 5 patients, stable disease in 18 patients, and disease progression in 7 patients. The objective response rate was 16.7%, the disease control rate was 76.7%, and the median PFS was 3.2 months. Univariate analysis showed that PFS was not associated with sex, age, smoking status, treatment lines, prior use of immunotherapy, or prior use of antiangiogenic drugs. The EV membrane proteins MET proto-oncogene, receptor tyrosine kinase (c-MET), epidermal growth factor receptor (EGFR), and vascular endothelial growth factor receptor 2 (VEGFR2) at baseline were associated with poor prognosis and correlated with the efficacy of immunotherapy plus chemotherapy. According to the receiver operating characteristics and Kaplan–Meier curve analyses, patients with high c-MET, EGFR, and VEGFR2 expression at baseline had significantly shorter PFS than those with low expression. In addition, VEGFR2 expression was increased after combined immunotherapy in responders, which was decreased in non-responders. The most common grade 2 or higher adverse events were neutropenia, gastrointestinal reactions, and thyroid dysfunction, all of which were tolerated.ConclusionsImmunotherapy plus single-agent chemotherapy as a second- or later-line treatment is safe, effective, and tolerable for metastatic NSCLC. EV markers can be used as predictive markers of efficacy in patients with metastatic NSCLC treated with immunotherapy plus chemotherapy to help monitor treatment efficacy and guide treatment decisions
    corecore