388 research outputs found

    Projective Ranking-based GNN Evasion Attacks

    Full text link
    Graph neural networks (GNNs) offer promising learning methods for graph-related tasks. However, GNNs are at risk of adversarial attacks. Two primary limitations of the current evasion attack methods are highlighted: (1) The current GradArgmax ignores the "long-term" benefit of the perturbation. It is faced with zero-gradient and invalid benefit estimates in certain situations. (2) In the reinforcement learning-based attack methods, the learned attack strategies might not be transferable when the attack budget changes. To this end, we first formulate the perturbation space and propose an evaluation framework and the projective ranking method. We aim to learn a powerful attack strategy then adapt it as little as possible to generate adversarial samples under dynamic budget settings. In our method, based on mutual information, we rank and assess the attack benefits of each perturbation for an effective attack strategy. By projecting the strategy, our method dramatically minimizes the cost of learning a new attack strategy when the attack budget changes. In the comparative assessment with GradArgmax and RL-S2V, the results show our method owns high attack performance and effective transferability. The visualization of our method also reveals various attack patterns in the generation of adversarial samples.Comment: Accepted by IEEE Transactions on Knowledge and Data Engineerin

    Water and ions transport in calcium silicate hydrate: a molecular dynamics study

    Get PDF
    Transport properties of water and ions in calcium silicate hydrate (C-S-H) greatly affect the durability of cementitious materials. In this study, molecular dynamics (MD) technique is used to investigate the transport behaviors of NaCl solution in C-S-H nanopores with different sizes (from 0.5 nm to 5 nm), and the hindering effect of C-S-H on the diffusion of water molecules and Cl ions is further explored in the case of a 5 nm pore. Results show that the diffusion coefficients of water molecules and Cl ions in C-S-H nanopores increase with the expansion of nanopore. At the atomic scale, the Ca-rich C-S-H forms Ca-O and Ca-Cl clusters with water molecules and Cl ions, respectively, and the Si-O tetrahedra on silicate chains can also build hydrogen bonding interactions with water molecules, which constrain the transport behaviors of water and ions. From the molecular perspective, this study innovatively investigates the effect of C-S-H pore size on the diffusion capacity of water and ions, and reveals the chemical bonding mechanism between water molecules, Cl ions and C-S-H, which provides a theoretical basis for studying the resistance of concrete to ionic attack

    BAMF-SLAM: Bundle Adjusted Multi-Fisheye Visual-Inertial SLAM Using Recurrent Field Transforms

    Full text link
    In this paper, we present BAMF-SLAM, a novel multi-fisheye visual-inertial SLAM system that utilizes Bundle Adjustment (BA) and recurrent field transforms (RFT) to achieve accurate and robust state estimation in challenging scenarios. First, our system directly operates on raw fisheye images, enabling us to fully exploit the wide Field-of-View (FoV) of fisheye cameras. Second, to overcome the low-texture challenge, we explore the tightly-coupled integration of multi-camera inputs and complementary inertial measurements via a unified factor graph and jointly optimize the poses and dense depth maps. Third, for global consistency, the wide FoV of the fisheye camera allows the system to find more potential loop closures, and powered by the broad convergence basin of RFT, our system can perform very wide baseline loop closing with little overlap. Furthermore, we introduce a semi-pose-graph BA method to avoid the expensive full global BA. By combining relative pose factors with loop closure factors, the global states can be adjusted efficiently with modest memory footprint while maintaining high accuracy. Evaluations on TUM-VI, Hilti-Oxford and Newer College datasets show the superior performance of the proposed system over prior works. In the Hilti SLAM Challenge 2022, our VIO version achieves second place. In a subsequent submission, our complete system, including the global BA backend, outperforms the winning approach.Comment: Accepted to ICRA202

    Evidence for gill slits and a pharynx in Cambrian vetulicolians: implications for the early evolution of deuterostomes.

    Get PDF
    BACKGROUND: Vetulicolians are a group of Cambrian metazoans whose distinctive bodyplan continues to present a major phylogenetic challenge. Thus, we see vetulicolians assigned to groups as disparate as deuterostomes and ecdysozoans. This divergence of opinions revolves around a strikingly arthropod-like body, but one that also bears complex lateral structures on its anterior section interpreted as pharyngeal openings. Establishing the homology of these structures is central to resolving where vetulicolians sit in metazoan phylogeny. RESULTS: New material from the Chengjiang Lagerstätte helps to resolve this issue. Here, we demonstrate that these controversial structures comprise grooves with a series of openings. The latter are oval in shape and associated with a complex anatomy consistent with control of their opening and closure. Remains of what we interpret to be a musculature, combined with the capacity for the grooves to contract, indicate vetulicolians possessed a pumping mechanism that could process considerable volumes of seawater. Our observations suggest that food captured in the anterior cavity was transported to dorsal and ventral gutters, which then channeled material to the intestine. This arrangement appears to find no counterpart in any known fossil or extant arthropod (or any other ecdysozoan). Anterior lateral perforations, however, are diagnostic of deuterostomes. CONCLUSIONS: If the evidence is against vetulicolians belonging to one or other group of ecdysozoan, then two phylogenetic options seem to remain. The first is that such features as vetulicolians possess are indicative of either a position among the bilaterians or deuterostomes but apart from the observation that they themselves form a distinctive and recognizable clade current evidence can permit no greater precision as to their phylogenetic placement. We argue that this is too pessimistic a view, and conclude that evidence points towards vetulicolians being members of the stem-group deuterostomes; a group best known as the chordates (amphioxus, tunicates, vertebrates), but also including the ambulacrarians (echinoderms, hemichordates), and xenoturbellids. If the latter, first they demonstrate that these members of the stem group show few similarities to the descendant crown group representatives. Second, of the key innovations that underpinned deuterostome success, the earliest and arguably most seminal was the evolution of openings that define the pharyngeal gill slits of hemichordates (and some extinct echinoderms) and chordates.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Anamorphic development and extended parental care in a 520 million-year-old stem-group euarthropod from China.

    Get PDF
    BACKGROUND: Extended parental care is a complex reproductive strategy in which progenitors actively look after their offspring up to - or beyond - the first juvenile stage in order to maximize their fitness. Although the euarthropod fossil record has produced several examples of brood-care, the appearance of extended parental care within this phylum remains poorly constrained given the scarcity of developmental data for Palaeozoic stem-group representatives that would link juvenile and adult forms in an ontogenetic sequence. RESULTS: Here, we describe the post-embryonic growth of Fuxianhuia protensa from the early Cambrian Chengjiang Lagerstätte in South China. Our data demonstrate anamorphic post-embryonic development for F. protensa, in which new tergites were sequentially added from a posterior growth zone, the number of tergites varies from eight to 30. The growth of F. protensa is typified by the alternation between segment addition, followed by the depletion of the anteriormost abdominal segment into the thoracic region. The transformation of abdominal into thoracic tergite is demarcated by the development of laterally tergopleurae, and biramous walking legs. The new ontogeny data leads to the recognition of the rare Chengjiang euarthropod Pisinnocaris subconigera as a junior synonym of Fuxianhuia. Comparisons between different species of Fuxianhuia and with other genera within Fuxianhuiida suggest that heterochrony played a prominent role in the morphological diversification of fuxianhuiids. Functional analogy with the flexible trunk ontogeny of Cambrian and Silurian olenimorphic trilobites suggests an adaptation to sporadic low oxygen conditions in Chengjiang deposits for F. protensa. Finally, understanding the growth of F. protensa allows for the interpretation of an exceptional life assemblage consisting of a sexually mature adult alongside four ontogenetically coeval juveniles, which constitutes the oldest occurrence of extended parental care by prolonged cohabitation in the panarthropod fossil record. CONCLUSIONS: Our findings constitute the most detailed characterization of the post-embryonic development in a soft-bodied upper stem-group euarthropod available to date. The new ontogeny data illuminates the systematics, trunk segmentation and palaeoecology of F. protensa, offers insights on the macroevolutionary processes involved in the diversification of this clade, and contributes towards an improved understanding of complex post-embryonic reproductive ecology in Cambrian euarthropods

    Case report and literature review: Orally ingested toothpick perforating the lower rectum

    Get PDF
    IntroductionMost foreign bodies (FBs) can spontaneously pass through the gastrointestinal tract. Sharp FBs are believed to be able to puncture any part of the gastrointestinal tract, causing perforation and potentially secondary damage to adjacent organs.Case descriptionA 44-year-old man complained of having persistent dull pain in the perianal region. He was diagnosed with a toothpick impacted into the wall of the lower rectum after accepting a digital rectal examination of the lower rectum and a pelvic computed tomography (CT). The surgeon extracted the FB using vascular forceps guided by the operator’s index finger. The patient was discharged after intravenous ceftriaxone was given for 6 days. A follow-up pelvic CT performed 2 weeks after surgery revealed that the perirectal fat and muscles had already normalized.ConclusionA systematic review of relevant literature from the past decade was performed to summarize the imaging features of an orally ingested toothpick perforating the gastrointestinal tract. The location of abdominal pain is an important clue for the diagnosis of toothpick perforation, and a CT examination is recommended as the first option for the detection of an ingested toothpick. Determining the location of the toothpick perforation and assessing the severity of local inflammation are important bases for the selection of treatment

    Lane-change path planning and control method for self-driving articulated trucks

    Get PDF
    Purpose – This study aims to develop an automatic lane-change mechanism on highways for self-driving articulated trucks to improve traffic safety. Design/methodology/approach – The authors proposed a novel safety lane-change path planning and tracking control method for articulated vehicles. A double-Gaussian distribution was introduced to deduce the lane-change trajectories of tractor and trailer coupling characteristics of intelligent vehicles and roads. With different steering and braking maneuvers, minimum safe distances were modeled and calculated. Considering safety and ergonomics, the authors invested multilevel self-driving modes that serve as the basis of decision-making for vehicle lane-change. Furthermore, a combined controller was designed by feedback linearization and single-point preview optimization to ensure the path tracking and robust stability. Specialized hardware in the loop simulation platform was built to verify the effectiveness of the designed method. Findings – The numerical simulation results demonstrated the path-planning model feasibility and controller-combined decision mechanism effectiveness to self-driving trucks. The proposed trajectory model could provide safety lane-change path planning, and the designed controller could ensure good tracking and robust stability for the closed-loop nonlinear system. Originality/value – This is a fundamental research of intelligent local path planning and automatic control for articulated vehicles. There are two main contributions: the first is a more quantifiable trajectory model for self-driving articulated vehicles, which provides the opportunity to adapt vehicle and scene changes. The second involves designing a feedback linearization controller, combined with a multi-objective decision-making mode, to improve the comprehensive performance of intelligent vehicles. This study provides a valuable reference to develop advanced driving assistant system and intelligent control systems for self-driving articulated vehicles
    corecore