97 research outputs found
Fourth order transport model on Yin-Yang grid by multi-moment constrained finite volume scheme
AbstractA fourth order transport model is proposed for global computation with the application of multi-moment constrained finite volume (MCV) scheme and Yin-Yang overset grid. Using multi-moment concept, local degrees of freedom (DOFs) are point-wisely defined within each mesh element to build a cubic spatial reconstruction. The updating formulations for local DOFs are derived by adopting multi moments as constraint conditions, including volume-integrated average (VIA), point value (PV) and first order derivative value (DV). Using Yin-Yang grid eliminates the polar singularities and results in a quasi-uniform mesh over the whole globe. Each component of Yin-Yang grid is a part of the LAT-LON grid, an orthogonal structured grid, where the MCV formulations designed for Cartesian grid can be applied straightforwardly to develop the high order numerical schemes. Proposed MCV model is checked by widely used benchmark tests. The numerical results show that the present model has fourth order accuracy and is competitive to most existing ones
Practical Encrypted Network Traffic Pattern Matching for Secure Middleboxes
Network Function Virtualisation (NFV) advances the adoption of composable software middleboxes. Accordingly, cloud data centres become major NFV vendors for enterprise traffic processing. Due to the privacy concern of traffic redirection to the cloud, secure middlebox systems (e.g., BlindBox) draw much attention; they can process encrypted packets against encrypted rules directly. However, most of the existing systems supporting pattern matching based network functions require the enterprise gateway to tokenise packet payloads via sliding windows. Such tokenisation induces a considerable communication overhead, which can be over 100 to the packet size. To overcome this bottleneck, in this paper, we propose the first bandwidth-efficient encrypted pattern matching protocol for secure middleboxes. We resort to a primitive called symmetric hidden vector encryption (SHVE), and propose a variant of it, aka SHVE+, to achieve constant and moderate communication cost. To speed up, we devise encrypted filters to reduce the number of accesses to SHVE+ during matching highly. We formalise the security of our proposed protocol and conduct comprehensive evaluations over real-world rulesets and traffic dumps. The results show that our design can inspect a packet over 20k rules within 100 s. Compared to prior work, it brings a saving of 94 in bandwidth consumption
- …