470 research outputs found

    Porphyromonas gingivalis short fimbriae are regulated by a FimS/FimR two-component system

    Get PDF
    Porphyromonas gingivalis possesses two distinct fimbriae. The long (FimA) fimbriae have been extensively studied. Expression of the fimA gene is tightly controlled by a two-component system (FimS/FimR) through a cascade regulation. The short (Mfa1) fimbriae are less understood. The authors have recently demonstrated that both fimbriae are required for formation of P. gingivalis biofilms. Here, the novel finding that FimR, a member of the two-component regulatory system, is a transcriptional activator of the mfa1 gene is promoted. Unlike the regulatory mechanism of FimA by FimR, this regulation of the mfa1 gene is accomplished by FimR directly binding to the promoter region of mfa1

    What Makes an Elite Shooter and Archer? The Critical Role of Interoceptive Attention

    Get PDF
    It is well-acknowledged that attention is important for expert performance in sports. However, the role of interoceptive attention, i.e., the attentional mechanism of awareness and conscious focus of bodily somatic and visceral signals, in self-paced and far-aiming sports remains to be explored. This study aims to investigate the relationship of expertise level and interoceptive attention ability in shooting and archery, and to examine if interoceptive attention can be improved by mindfulness training in elite athletes of shooting and archery. We tested the performance differences of 41 elite athletes from the Chinese national team of shooting and archery and 43 non-elite athletes from a provincial team in breath detection task (BDT) and dot flash detection task (DDT), which were designed to measure interoceptive and exteroceptive attention (i.e., attention toward information input of primary sensory), respectively. Furthermore, we applied mindfulness training to the 41 elite athletes for 5–8 weeks and remeasured their performances of BDT and DDT. Results showed that elite athletes outperformed non-elite athletes in BDT (but not in DDT) both in accuracy (DiffBDT = 11.50%, p = 0.004) and in discrimination sensitivity (d′, DiffBDT = 1.159, p = 0.002). Difference in accuracy and d′ reached significant level only in BDT (accuracy: DiffBDT = −8.50%, p = 0.001; d′: DiffBDT = −0.822, p = 0.003) before and after mindfulness training. These results indicate that elite athletes of shooting and archery (i.e., relative to non-elite athletes) can better perceive the somatic and visceral responses or changes and discriminate these signals from noises. Moreover, interoceptive attention can be improved by mindfulness training. These results have important implications for the selection and training of athletes of shooting and archery

    Experimental and numerical simulation study of perforation effect of steel pipes subject to the impact loadings of ASC and LSC jets

    Get PDF
    The perforation effect of steel pipes subjected to the circular-shaped charge (ASC) and linear-shaped charge (LSC) jet were studied by experimental research, and the explicit nonlinear dynamic finite element computer code LS-DYNA was adapted to study the nonlinear responses of the steel pipes, which subjected to the impact of the two different jets, using Lagrangian-Eulerian coupling method. The deformation process and the stress of the steel pipes were described and analyzed, and the simulation results are in good agreement with the experiment data. The studies indicated that under the impact of ASC jet, the steel pipe got a circular incision and a deformation process of local perforation, flocculent shear lip forming and axial shock. Under the impact of LSC jet, the steel pipe got a ship-type incision and a deformation process of coupling of local perforation and dent, whole bending and radial shock. The formation of flocculent shear lip attributes to the radial stress concentration. Under the impact of LSC jet, the whole bending leads to the axial stretch and tearing of the cut tip, and there is a bigger radial plastic deformation area than the damage effect for the impact of ASC jet

    Tumor-targeted RNA-interference: functional non-viral nanovectors

    Get PDF
    This is the published version, also available here: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092671/.While small interfering RNA (siRNA) and microRNA (miRNA) have attracted extensive attention and showed significant promise for the study, diagnosis and treatment of human cancers, delivering siRNA or miRNA specifically and efficiently into tumor cells in vivo remains a great challenge. Delivery barriers, which arise mainly from the routes of administration associated with complex physiochemical microenvironments of the human body and the unique properties of RNAs, hinder the development of RNA-interference (RNAi)-based therapeutics in clinical practice. However, in available delivery systems, non-viral nanoparticle-based gene/RNA-delivery vectors, or nanovectors, are showing powerful delivery capacities and huge potential for improvements in functional nanomaterials, including novel fabrication approaches which would greatly enhance delivery performance. In this review, we summarize the currently recognized RNAi delivery barriers and the anti-barrier requirements related to vectors' properties. Recent efforts and achievements in the development of novel nanomaterials, nanovectors fabrication methods, and delivery approaches are discussed. We also review the outstanding needs in the areas of material synthesis and assembly, multifunction combinations, proper delivery and assisting approaches that require more intensive investigation for the comprehensive and effective delivery of RNAi by non-viral nanovectors

    When superhydrophobic coatings are icephobic: Role of surface topology

    Get PDF
    Among different types of anti-icing coatings, superhydrophobic coatings have attracted considerable attention due to their water repellency and low heat-transfer rate. However, condensation on superhydrophobic surfaces at low temperatures usually causes an increase in ice adhesion because of the induced wetting of micro- and nanostructures. By tuning the weight ratio of surface-modified nanoparticles to unmodified ones, five superhydrophobic coatings with different structural features at the microscale were developed. Ice-adhesion strength and ice-nucleation temperature were studied, together with the effect of moisture condensation on ice adhesion. It was found that the ice-adhesion strength and icing temperature of these coatings do not necessarily follow the same order among these surfaces because of different mechanisms involved. Surface roughness is inadequate to describe the necessary surface features that critically affect the anti-icing behavior of the coatings. Detailed topology/geometry has to be considered when designing icephobic coatings. Superhydrophobic coatings can be adopted for icephobic applications once the surface topology is carefully designed

    Mechanically robust transparent anti-icing coatings: Roles of dispersion status of Titanate nanotubes

    Get PDF
    © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Ice accretion on automobiles, aerospace components, precision instruments, and photovoltaic devices detrimentally affect their performance and increase the maintenance cost. Despite significant efforts devoted to the investigation of anti-icing coatings in the past decades, mechanically robust and transparent anti-icing coatings are rarely reported. In this study, titanate nanotubes are used as filler to prepare mechanically robust anti-icing coatings with a sol-gel method. Specially, the effect of dispersion status of nanotubes on the transmittance, surface roughness, and water repellency is investigated. The optimized smooth, transparent coating exhibits higher water repellency and better anti-icing performance in terms of ice-adhesion strength, icing delay time, and ice-nucleation temperature than the rough one. Much higher hardness and scratch resistance than that of commercially available icephobic or anti-icing coatings is obtained on the smooth, transparent sample; the coating also presents good adhesion to the substrate

    Tunable nonlinear optical bistability based on Dirac semimetal in photonic crystal Fabry-Perot cavity

    Full text link
    In this paper, we study the nonlinear optical bistability (OB) in a symmetrical multilayer structure. This structure is constructed by embedding a nonlinear three-dimensional Dirac semimetal (3D DSM) into a solution filled one-dimensional photonic crystal Fabry-Perot cavity. OB stems from the third order nonlinear conductivity of 3D DSM and the local field of resonance mode could enhance the nonlinearity and reduce the thresholds of OB. This structure achieves the tunability of OB due to that the transmittance could be modulated by the Fermi energy. OB threshold and threshold width could be remarkably reduced by increasing the Fermi energy. Besides, it is found that the OB curve depends heavily on the angle of incidence of the incoming light, the structural parameters of the Fabry-Perot cavity, and the position of 3D DSM inside the cavity. After parameter optimization, we obtained OB with a threshold of 106 V/m. We believe this simple structure provides a reference idea for realizing low threshold and tunable all optical switching devices. Keywords: Optical bistability, Dirac semimetal, Fabry-Perot cavity

    Transparent icephobic coatings using bio-based epoxy resin

    Get PDF
    © 2017 Elsevier Ltd Ice accretion and accumulation pose serious challenges for maintaining the operation and performance of outdoor facilities in cold climate. Epoxy resin, with a wide range of formulation possibilities, is widely used as protective coatings for outdoor facilities. However, bisphenol A (BPA), a key ingredient of conventional epoxy, is known to interfere with human's natural hormones and cause various disorders in the body system. Reduction or complete elimination of the usage of BPA is therefore high in the agenda of the coatings industries. In this study, a transparent, anti-icing, bio-based ep oxy coating was developed for room-temperature processing. As a result of hydrophobic treatment with addition of silanes, the glass-transition temperature and anti-icing performance of bio-based epoxy resin increased significantly. The optimum coating exhibited good water repellency and ice-adhesion strength as low as 50 kPa at − 20°, which was half of the widely accepted threshold value of 100 kPa for icephobic coatings. The icing delay time was much delayed compared with that of an uncoated glass substrate. To further demonstrate the anti-icing performance of the optimized coating, supercooled-water dripping on coated wooden outdoor floors and wooded boards was conducted at − 15 °C, superior anti-icing performance was observed on the coated substrates
    • …
    corecore