69 research outputs found

    Ground-Based Polarimetric Remote Sensing of Dust Aerosol Properties in Chinese Deserts near Hexi Corridor

    Get PDF
    One-year observation of dust aerosol properties near Hexi Corridor was obtained from polarimetric measurements by ground-based sunphotometer in the county of Minqin in northwestern China from March 2012 to February 2013. We observed an annual mean AOD of 0.22±0.22 at 0.50 μm and Ångström exponents of 0.1–1.0 fitting a bimode normal distribution centered at 0.18 and 0.50, respectively. The effective radii of fine (0.13–0.17 μm) and coarse (2.49–3.49 μm) modes were found stable at all seasons together with the appearance of a third mode of particle radius at 0.4–1.0 μm when AOD was larger than 0.6. It is noticeable that the real (1.5–1.7) and imaginary (0.0005 to 0.09) parts of complex refractive indices were higher than other studies performed in other desert regions of China, while single scattering albedo was relatively lower (~0.84–0.89) at wavelengths of 0.44, 0.67, 0.87, and 1.02 μm. This is partially due to calcite or hematite in the soil in Minqin or the influence of anthropogenic aerosols containing carbon. Moreover, from our novel polarimetric measurement, the scattering phase function (F11) and degree of linear polarization for incident unpolarized light (-F12/F11) of dust aerosols were also obtained within this deserted area

    iTRAQ Proteomic Analysis Reveals That Metabolic Pathways Involving Energy Metabolism Are Affected by Tea Tree Oil in Botrytis cinerea

    No full text
    Tea tree oil (TTO) is a volatile essential oil obtained from the leaves of the Australian tree Melaleuca alternifolia by vapor distillation. Previously, we demonstrated that TTO has a strong inhibitory effect on Botrytis cinerea. This study investigates the underlying antifungal mechanisms at the molecular level. A proteomics approach using isobaric tags for relative and absolute quantification (iTRAQ) was adopted to investigate the effects of TTO on B. cinerea. A total of 718 differentially expression proteins (DEPs) were identified in TTO-treated samples, 17 were markedly up-regulated and 701 were significantly down-regulated. Among the 718 DEPs, 562 were annotated and classified into 30 functional groups by GO (gene ontology) analysis. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis linked 562 DEPs to 133 different biochemical pathways, involving glycolysis, the tricarboxylic acid cycle (TCA cycle), and purine metabolism. Additional experiments indicated that TTO destroys cell membranes and decreases the activities of three enzymes related to the TCA cycle. Our results suggest that TTO treatment inhibits glycolysis, disrupts the TCA cycle, and induces mitochondrial dysfunction, thereby disrupting energy metabolism. This study provides new insights into the mechanisms underlying the antifungal activity of essential oils

    Infection of post-harvest peaches by Monilinia fructicola accelerates sucrose decomposition and stimulates the Embden–Meyerhof–Parnas pathway

    No full text
    Fruit fungal infection: Effects on sugar metabolism A study by researchers in China provides insights into changes to sugar metabolism during fungal infection in post-harvest peaches. Fungal infections and associated disease development can alter sugar metabolism in post-harvest fruits, leading to rapid decay and a short shelf life. However, little is known about the mechanisms behind these fungal infections. Xingfeng Shao and Yingying Wei at Ningbo University and co-workers examined the effect of brown rot, caused by a fungus called Monilinia fructicola, on sugar metabolism in two peach cultivars kept under chilled conditions. As the disease progressed, the fruit increased its energy supply by decomposing sucrose and generating more glucose. The team uncovered the major enzymes responsible for this sucrose decomposition. The increased glucose stimulated the Embden-Meyerhof-Parnas pathway, which in turn helped the peaches fight infection

    Sucrose treatment of mung bean seeds results in increased vitamin C, total phenolics, and antioxidant activity in mung bean sprouts

    No full text
    Mung bean seeds were soaked in 0.5 g/L of sucrose solution for 24 hr at 25°C and sprayed with this solution every 12 hr during the germination for 5 days. Our results showed that exogenous sucrose significantly increased vitamin C content throughout germination, and sucrose-treated sprouts had 23% more vitamin C (20.8 mg/100 g FW) than in control sprouts on day 5. This may be related to higher levels of glucose and l-galactono-1, 4-lactone dehydrogenase activity seen in the treated group versus the control. Total phenolic content and activities of superoxide dismutase, catalase, and ascorbate peroxidase were significantly higher in sucrose-treated mung bean sprouts than the controls, which contributed to the higher antioxidant activity in sucrose-treated sprouts. These results indicate that exogenous sucrose treatment increases the content of vitamin C and total phenolics, and enhances the antioxidant activity in mung bean sprouts. It suggests that exogenous sucrose treatment could be an effective technique for producing mung bean sprouts with more vitamin C and higher antioxidant capacity

    Diversity of the protease-producing bacteria and their extracellular protease in the coastal mudflat of Jiaozhou Bay, China: in response to clam naturally growing and aquaculture

    Get PDF
    The booming mudflat aquaculture poses an accumulation of organic matter and a certain environmental threat. Protease-producing bacteria are key players in regulating the nitrogen content in ecosystems. However, knowledge of the diversity of protease-producing bacteria in coastal mudflats is limited. This study investigated the bacterial diversity in the coastal mudflat, especially protease-producing bacteria and their extracellular proteases, by using culture-independent methods and culture-dependent methods. The clam aquaculture area exhibited a higher concentration of carbon, nitrogen, and phosphorus when compared with the non-clam area, and a lower richness and diversity of bacterial community when compared with the clam naturally growing area. The major classes in the coastal mud samples were Bacteroidia, Gammaproteobacteria, and Alphaproteobacteria. The Bacillus-like bacterial community was the dominant cultivated protease-producing group, accounting for 52.94% in the non-clam area, 30.77% in the clam naturally growing area, and 50% in the clam aquaculture area, respectively. Additionally, serine protease and metalloprotease were the principal extracellular protease of the isolated coastal bacteria. These findings shed light on the understanding of the microbes involved in organic nitrogen degradation in coastal mudflats and lays a foundation for the development of novel protease-producing bacterial agents for coastal mudflat purification

    Hydrogen-Rich Water Treatment of Fresh-Cut Kiwifruit with Slightly Acidic Electrolytic Water: Influence on Antioxidant Metabolism and Cell Wall Stability

    No full text
    The synergistic impact of hydrogen-rich water (HRW, 394 ppb) and slightly acidic electrolyzed water (SAEW, pH of 6.25 ± 0.19) on the antioxidant metabolism of fresh-cut kiwifruit during storage was investigated (temperature: (3 ± 1) °C, humidity: 80%–85%). Compared with control group, H+S treatment increased the contents of active oxygen-scavenging enzymes (SOD, CAT, POD, and APX) and inhibited the increase of O2•− and H2O2 contents during the storage of fresh-cut kiwifruit. Meanwhile, H+S treatment could reduce the activities of the cell wall-degrading enzymes PG, PME, PL, Cx, and β-Gal, inhibit the formation of soluble pectin, delay the degradation rate of propectin, cellulose, and pseudocellulose, and maintain higher fruit hardness and chewability. The results showed that H+S treatment could enhance free radical scavenging ability and reduce the cell wall metabolism of fresh-cut kiwifruit, maintaining the good texture found in fresh-cut fruit

    Solidago canadensis L essential oil vapor effectively inhibits Botrytis cinerea growth and preserves postharvest quality of strawberry as a food model system

    Get PDF
    This study investigated the anti-fungal properties of Solidago canadensis L essential oil (SCLEO) against Botrytis cinerea in vitro, and its ability to control gray mold and maintain quality in strawberry fruits. SCLEO exhibited dose-dependent antifungal activity against B. cinerea and profoundly altered mycelial morphology, cellular ultrastructure, and membrane permeability as evaluated by scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy. SCLEO vapor at 0.1 mL/L maintained higher sensory acceptance and reduced decay of fresh strawberry fruit, and also reduced gray mold in artificially inoculated fruit. SCLEO treatment did not however, stimulate phenylalanin ammonia-lyase (PAL), polyphenol oxidase (POD), or chitinase (CHI), enzymes related to disease resistance. This suggests that SCLEO reduces gray mold by direct inhibition of pathogen growth. SCLEO vapor may provide a new and effective strategy for controlling postharvest disease and maintaining quality in strawberries

    Hierarchical Prosody Analysis Improves Categorical and Dimensional Emotion Recognition

    Get PDF
    Extracting reliable speech features is one of the most fundamental difficulties in emotion recognition systems. The extraction of spectral features has drawn much research attention but the extraction of prosody features, studying emotional cues, was often done by calculating statistics at an utterance level. However, the detailed prosody of different linguistic units can contain a large amount of emotion-related information. In this paper, we propose a novel hierarchical prosody analysis strategy by wavelet decomposition that models multi-level emotion transition phenomena. Our approach was evaluated on the IEMOCAP corpus and performed the best compared with state-of-the-art alternatives for both categorical and dimensional emotion recognition tasks, enabling the advancement of capturing dynamics in emotion expressions.13th Asia Pacific Signal and Information Processing Association Annual Summit and Conference 2021 (APSIPA ASC), 14-17 December 2021, Tokyo, Japa

    Hydroxypropyl methylcellulose hydrocolloid systems : effect of hydroxypropy group content on the phase structure, rheological properties and film characteristics

    No full text
    This work investigates the structure, processability, and film performance of hydroxypropyl methylcellulose (HPMC) hydrocolloids affected by hydroxypropy substitution degree and blending with hydroxypropyl starch (HPS). The hydroxypropylation of HPMC could increase inter-chain hydrogen bonding, thereby promoting its gelation, and improve film-forming, but reduce the mechanical properties of the films. HPMC-HPS mixed hydrocolloid system showed a typical “sea-island” morphology with the continuous phase changing with blend ratio. The content of hydroxypropy groups of HPMC affected the compatibility between HPMC and HPS, the morphology of the discrete phase, and the rheological properties of the blends. The fluid-like HPS enhanced the gel strength of HPMC when they had better compatibility. With a higher degree of hydroxypropy substitution, blend films exhibited a much denser structure, better oxygen barrier property, and appropriate mechanical properties. The knowledge obtained from this work could guide the development of edible packaging materials with desired properties and functionality
    corecore