29 research outputs found

    One step electrochemical fabrication of high performance Ni@Fe-doped Ni(oxy)hydroxide anode for practical alkaline water electrolysis

    Get PDF
    Oxygen evolution reaction (OER) is a rate-determining process in alkaline water electrolysis (AWE). Herein, we report a novel one-step oxidation-electrodeposition (OSOE) approach to generate core@shell nanoarrays-based AWE electrode with outstanding OER performances: an overpotential of 245 mV at 10 mA cm−2 (Tafel slope: 37 mV dec−1), and excellent stability under huge current densities. Moreover, the alkaline (AEL) cell equipped with NM-OSOE-23 anode recorded significant performance improvement of 200 mV lower voltage (2 A cm−1) compared with a similar cell used bare Ni mesh as an anode, which was contributed by notable enhancements of interface contact, anodic charge transfer, and mass transfer. These promising results are attributed to the constructed specific core@shell Ni@Fe-doped Ni(oxy)hydroxide nanoarray architecture on commercial nickel mesh. This study demonstrates this first reported OSOE can be commercialized to make highly efficient anodes enabling next-generation AWE

    Time-restricted feeding improves metabolic and endocrine profiles in mice with polycystic ovary syndrome

    Get PDF
    ObjectivesPolycystic ovary syndrome (PCOS) is one of the most common endocrinopathy disorders in premenopausal women, which is characterized by hyperandrogenemia, anovulation, and polycystic ovarian morphology (PCOM). Time-restricted feeding (TRF) is a new intermittent restriction dietary pattern, which has been shown to have positive benefits on obesity and glycolipid metabolism disorders. We aimed to explore the effect of the feeding regimen (ad libitum vs. TRF) on the glycolipid metabolism and reproductive endocrine disorders in a PCOS mouse model.MethodsPCOS mouse model was induced by continuous subcutaneous administration of dihydrotestosterone for 21 days. Mice were fed a high-fat diet (HFD) for 8 weeks on an ad libitum or time- restricted diet (from 10:30 p.m. to 6:30 a.m.).ResultsCompared to control mice, PCOS mice that received TRF treatment had significantly lower body weight, reduced adiposity, lower area under the curve (AUC) of glucose response in the oral glucose tolerance test (OGTT), and lower AUC in the insulin tolerance test (ITT). TRF also ameliorated lipid metabolism, as shown by a reduction in plasma lipid profiles (triglycerides and cholesterol) and the triglyceride content in the liver of PCOS mice. In terms of reproduction, the plasma androgen level, plasma estrogen (E2) level, and luteinizing hormone (LH)/follicle stimulating hormone (FSH) ratio in PCOS mice were significantly reduced after 8 weeks of TRF treatment. In addition, ovarian histology showed that TRF inhibits cyst formation and promotes corpus luteum formation.ConclusionIn conclusion, TRF improved metabolic and endocrine profiles in mice with PCOS

    Diverse Expected Gradient Active Learning for Relative Attributes

    No full text

    Deep reconstruction of Ni-Al-based pre-catalysts for a highly efficient and durable anion-exchange membrane (AEM) electrolyzer

    No full text
    The anion exchange membrane (AEM) electrolyzer has shown great potential for producing green hydrogen. However, this technology is still in its early stages and has not yet been applied on an industrial scale. One of the most significant challenges is the lack of cost-effective and scalable techniques for producing highly active, durable, and earth-abundant metal-based catalysts. Herein, we present a scalable thermal spraying process for fabricating defect-rich nickel-based HNA-CA that can function as an efficient pre-catalyst for both (hydrogen evolution reaction) HER and (oxygen evolution reaction) OER. Particularly, after deep reconstruction through simple electrochemical activation, the obtained HNA-CA-H and HNA-CA-O exhibit the lowest overpotential of −31 mV (HER) and 188 mV (OER) at 10 mA cm−2, surpassing that of noble metal-based catalysts such as Pt and IrO2, respectively. By coupling two 5 cm2 electrodes, the resulting HNA-CA-H(-)‖HNA-CA-O(+) AEM electrolyzer cell demonstrates exceptional performance, achieving an extraordinarily low cell voltage of 1.89 V at 1 A cm−2 (1 M KOH, room temperature). Furthermore, it showcases remarkable durability, sustaining operation for an impressive 500 hours at 5 A (1 A cm−2). These performance metrics notably outclass the majority of AEM electrolyzers reported under comparable operational settings. The outcomes can primarily be ascribed to the substantial improvements in interfacial contact, charge transfer efficiency, and mass transport mechanisms, all of which were comprehensively unveiled through in situ impedance analysis, ex situ structural characterization, and a thorough investigation of wettability and bubble dynamics. These findings hold significant promise for expediting the advancement and practical deployment of AEM electrolysis technology.</p

    Deep reconstruction of Ni-Al-based pre-catalysts for a highly efficient and durable anion-exchange membrane (AEM) electrolyzer

    No full text
    The anion exchange membrane (AEM) electrolyzer has shown great potential for producing green hydrogen. However, this technology is still in its early stages and has not yet been applied on an industrial scale. One of the most significant challenges is the lack of cost-effective and scalable techniques for producing highly active, durable, and earth-abundant metal-based catalysts. Herein, we present a scalable thermal spraying process for fabricating defect-rich nickel-based HNA-CA that can function as an efficient pre-catalyst for both (hydrogen evolution reaction) HER and (oxygen evolution reaction) OER. Particularly, after deep reconstruction through simple electrochemical activation, the obtained HNA-CA-H and HNA-CA-O exhibit the lowest overpotential of −31 mV (HER) and 188 mV (OER) at 10 mA cm−2, surpassing that of noble metal-based catalysts such as Pt and IrO2, respectively. By coupling two 5 cm2 electrodes, the resulting HNA-CA-H(-)‖HNA-CA-O(+) AEM electrolyzer cell demonstrates exceptional performance, achieving an extraordinarily low cell voltage of 1.89 V at 1 A cm−2 (1 M KOH, room temperature). Furthermore, it showcases remarkable durability, sustaining operation for an impressive 500 hours at 5 A (1 A cm−2). These performance metrics notably outclass the majority of AEM electrolyzers reported under comparable operational settings. The outcomes can primarily be ascribed to the substantial improvements in interfacial contact, charge transfer efficiency, and mass transport mechanisms, all of which were comprehensively unveiled through in situ impedance analysis, ex situ structural characterization, and a thorough investigation of wettability and bubble dynamics. These findings hold significant promise for expediting the advancement and practical deployment of AEM electrolysis technology.</p

    Deep reconstruction of Ni-Al-based pre-catalysts for a highly efficient and durable anion-exchange membrane (AEM) electrolyzer

    No full text
    The anion exchange membrane (AEM) electrolyzer has shown great potential for producing green hydrogen. However, this technology is still in its early stages and has not yet been applied on an industrial scale. One of the most significant challenges is the lack of cost-effective and scalable techniques for producing highly active, durable, and earth-abundant metal-based catalysts. Herein, we present a scalable thermal spraying process for fabricating defect-rich nickel-based HNA-CA that can function as an efficient pre-catalyst for both (hydrogen evolution reaction) HER and (oxygen evolution reaction) OER. Particularly, after deep reconstruction through simple electrochemical activation, the obtained HNA-CA-H and HNA-CA-O exhibit the lowest overpotential of −31 mV (HER) and 188 mV (OER) at 10 mA cm−2, surpassing that of noble metal-based catalysts such as Pt and IrO2, respectively. By coupling two 5 cm2 electrodes, the resulting HNA-CA-H(-)‖HNA-CA-O(+) AEM electrolyzer cell demonstrates exceptional performance, achieving an extraordinarily low cell voltage of 1.89 V at 1 A cm−2 (1 M KOH, room temperature). Furthermore, it showcases remarkable durability, sustaining operation for an impressive 500 hours at 5 A (1 A cm−2). These performance metrics notably outclass the majority of AEM electrolyzers reported under comparable operational settings. The outcomes can primarily be ascribed to the substantial improvements in interfacial contact, charge transfer efficiency, and mass transport mechanisms, all of which were comprehensively unveiled through in situ impedance analysis, ex situ structural characterization, and a thorough investigation of wettability and bubble dynamics. These findings hold significant promise for expediting the advancement and practical deployment of AEM electrolysis technology.</p

    A novel multi-channel porous structure facilitating mass transport towards highly efficient alkaline water electrolysis

    Get PDF
    An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis (AWE) efficiency by optimizing the mass transport mechanisms. This effect becomes even more pronounced when aiming to achieve elevated current densities. Herein, we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes. Particularly, the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec−1 (HER) and 49 mV dec−1 (OER). As anticipated, the alkaline electrolyzer (AEL) cell incorporating multi-channel porous electrodes (NP-LT30) exhibited a remarkable improvement in cell efficiency, with voltage drops (from 2.28 to 1.97 V) exceeding 300 mV under 1 A cm−1, compared to conventional perforated Ni plate electrodes. This enhancement mainly stemmed from the employed multi-channel porous structure, facilitating mass transport and bubble dynamics through an innovative convection mode, surpassing the traditional convection mode. Furthermore, the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm−2. This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications.</p

    Deep reconstruction of Ni-Al-based pre-catalysts for a highly efficient and durable anion-exchange membrane (AEM) electrolyzer

    No full text
    The anion exchange membrane (AEM) electrolyzer has shown great potential for producing green hydrogen. However, this technology is still in its early stages and has not yet been applied on an industrial scale. One of the most significant challenges is the lack of cost-effective and scalable techniques for producing highly active, durable, and earth-abundant metal-based catalysts. Herein, we present a scalable thermal spraying process for fabricating defect-rich nickel-based HNA-CA that can function as an efficient pre-catalyst for both (hydrogen evolution reaction) HER and (oxygen evolution reaction) OER. Particularly, after deep reconstruction through simple electrochemical activation, the obtained HNA-CA-H and HNA-CA-O exhibit the lowest overpotential of −31 mV (HER) and 188 mV (OER) at 10 mA cm−2, surpassing that of noble metal-based catalysts such as Pt and IrO2, respectively. By coupling two 5 cm2 electrodes, the resulting HNA-CA-H(-)‖HNA-CA-O(+) AEM electrolyzer cell demonstrates exceptional performance, achieving an extraordinarily low cell voltage of 1.89 V at 1 A cm−2 (1 M KOH, room temperature). Furthermore, it showcases remarkable durability, sustaining operation for an impressive 500 hours at 5 A (1 A cm−2). These performance metrics notably outclass the majority of AEM electrolyzers reported under comparable operational settings. The outcomes can primarily be ascribed to the substantial improvements in interfacial contact, charge transfer efficiency, and mass transport mechanisms, all of which were comprehensively unveiled through in situ impedance analysis, ex situ structural characterization, and a thorough investigation of wettability and bubble dynamics. These findings hold significant promise for expediting the advancement and practical deployment of AEM electrolysis technology.</p
    corecore