26 research outputs found
Shoot/Root Interactions Affect Soybean Photosynthetic Traits and Yield Formation: A Case Study of Grafting With Record-Yield Cultivars
Improvement of soybean [Glycine max (L.) Merr.] yield and photosynthesis physiology have been achieved over decades of cultivar breeding. Identification of the mechanisms involved in shoot-root interactions would be beneficial for the development of yield improvement breeding strategies. The objectives of this study were to investigate soybean shoot-root interactions with different-year released soybean cultivars and to evaluate their effects on grain yield and yield components. Soybean grafts used in this study were constructed with two record-yield cultivars Liaodou14 (L14) and Zhonghuang35 (Z35) and eleven cultivars released in 1966–2006 from the United States and Chinese. The grafting experiments were conducted as pot-culture experiments and repeated in 2014 and 2015. Our results showed that net photosynthesis rate (PN) was positively correlated to both root activity and root bleeding sap mass (RBSM) during the R6 reproductive stage. Moreover, different year-released soybean shoots had all exhibited capabilities of changing the root activity and architecture of L14 and Z35 rootstocks to “generation”-specific patterns during all reproductive stages. However, these influences were independent of the photosynthetic strength. Yield analysis had demonstrated that high-yielding root systems (L14 and Z35 rootstocks) could cause more than 15% of yield increase in seven out of eleven common scions in a scion-genotype-dependent manner. For Williams-descendant cultivar scions, L14 and Z35 rootstocks promoted yields mainly by increasing the seed number (SN), but those scions of Amsoy-descendent cultivars showed mainly seed weight (SW) increases when grafted onto L14 and Z35 rootstocks. On the other hand, although most tested common rootstocks did not show significant influence over the final yields in record-yield L14 and Z35 scions, they were obviously capable of shifting the formation of yield components when compared to L14 and Z35 self-grafting controls. Taken together, soybean shoots could influence the root physiology and played a crucial role in the determination of yield potentials. Synergistically with shoots, soybean roots played a more supportive role during the realization of yield potentials through root activities and by balancing the formation of yield components. These findings provided interesting insightful information for developing new breeding strategies which aim to pyramid elite physiological and yield traits by selecting specific parental combinations
MSH2 and MSH6 in mismatch repair system account for soybean (Glycine max (L.) Merr.) tolerance to cadmium Toxicity by determining DNA damage response
Our aim was to investigate DNA mismatch repair (MMR) genes regulating cadmium tolerance in two soybean cultivars. Cultivars Liaodou 10 (LD10, Cd-sensitive) and Shennong 20 (SN20, Cd-tolerant) seedlings were grown hydroponically on Murashige and Skoog (MS) media containing 0–2.5 mg·L–1 Cd for 4 days. Cd stress induced less random amplified polymorphism DNA (RAPD) polymorphism in LD10 than in SN20 roots, causing G1/S arrest in LD10 and G2/M arrest in SN20 roots. Virus-induced gene silencing (VIGS) of MLH1 in LD10-TRV-MLH1 plantlets showed markedly diminished G1/S arrest but enhanced root length/area under Cd stress. However, an increase in G1/S arrest and reduction of G2/M arrest occurred in SN20-TRV-MSH2 and SN20-TRV-MSH6 plantlets with decreased root length/area under Cd stress. Taken together, we conclude that the low expression of MSH2 and MSH6, involved in the G2/M arrest, results in Cd-induced DNA damage recognition bypassing the MMR system to activate G1/S arrest with the assistance of MLH1. This then leads to repressed root growth in LD10, explaining the intervarietal difference in Cd tolerance in soybean
Batch Production of Wafer-Scale Monolayer MoS<sub>2</sub>
Monolayer MoS2 has emerged as a highly promising candidate for next-generation electronics. However, the production of monolayer MoS2 with a high yield and low cost remains a challenge that impedes its practical application. Here, a significant breakthrough in the batch production of wafer-scale monolayer MoS2 via chemical vapor deposition is reported. Notably, a single preparation process enables the growth of multiple wafers simultaneously. The homogeneity and cleanliness of the entire wafer, as well as the consistency of different wafers within a batch, are demonstrated via morphology characterizations and spectroscopic measurements. Field-effect transistors fabricated using the grown MoS2 exhibit excellent electrical performances, confirming the high quality of the films obtained via this novel batch production method. Additionally, we successfully demonstrate the batch production of wafer-scale oxygen-doped MoS2 films via in situ oxygen doping. This work establishes a pathway towards mass preparation of two-dimensional materials and accelerates their development for diverse applications
Effect of Drought Stress at Reproductive Stages on Growth and Nitrogen Metabolism in Soybean
This study aims to determine variability among soybean (Glycine max (L.) Merr.) cultivars under drought conditions and how nitrogen metabolites, metabolism-related enzymes, and gene expression vary during soybean growth. Three soybean cultivars, Shennong17 (CV.SN17), Shennong8 (CV.SN8), and Shennong12 (CV.SN12), were grown in pot culture and subjected to drought stress at reproductive stages for 45 days. The results showed that long-term drought stress decreased biomass allocation to reproductive organs, weakened antioxidant capacity, and reduced seed weight, effects that were less pronounced in CV.SN12 compared with those in CV.SN8 and CV.SN17. Drought stress decreased the concentrations of nitrogen and soluble protein but increased nitrate concentration in leaves. This was related to the significantly reduction of nitrogen metabolism efficiency, including decreased activities of nitrogen metabolism enzymes, and downregulated expression of GmNR, GmNiR, GmGS, and GmGOGAT. Drought stress increased the concentrations of free amino acid, proline, and soluble sugar in leaves to enhance the osmotic adjustment ability. Furthermore, soybean seed weight showed significantly correlation (p < 0.05) with nitrogen-metabolism-related parameters. Based on the performance of growth, nitrogen metabolism, and yield attributes, CV.SN12 showed the highest tolerance to drought, followed by CV.SN8 and CV.SN17. In addition, these nitrogen-metabolism-related parameters could be used in soybeans to select for drought tolerance
Immobilization of β-CD on a Hyper-Crosslinked Polymer for the Enhanced Removal of Amines from Aqueous Solutions
In this paper, we adopted a simple and efficient strategy to prepare a β-cyclodextrin (β-CD)-modified hyper-crosslinked polymer (CDM-HCP). The structures and physicochemical properties of the as-synthesized polymer were also evaluated. It was applied to the removal of anilines from aqueous solutions. The introduction of β-CD into the hyper-crosslinked polymer significantly enhanced adsorption properties for the removal of various amines. The adsorption kinetics agreed with the pseudo-second-order mode very well. The adsorption isotherm data of p-methylaniline (p-MA) and p-aminobenzoic acid (p-ABC) were in agreement with the Langmuir isotherm, whereas aniline and p-chloroaniline (p-CA) were fitted best with the Freundlich model. The maximum adsorption capacities (qmax) determined by adsorption isotherms were 148.97 mg/g for aniline, 198.45 mg/g for p-MA, 293.71 mg/g for p-CA, and 622.91 mg/g for p-ABC, respectively. It had higher adsorption capacities than those of some commercial polymeric resins, such as XAD-4, PA66, and AB-8. The interaction mechanism was investigated by FTIR, XPS, and the ONIOM2 method. A CDM-HCP can be regenerated efficiently and used repeatedly, indicating its potential technological applications in removing organic pollutants from actual industrial effluents
Healable, Flexible Supercapacitors Based on Shape Memory Polymers
Supercapacitors as novel and efficient energy storage devices could provide a higher power density and energy density compared to other electronics and devices. However, traditional supercapacitors are readily damaged, which leads to degraded performance or even failure. To make them more durable and efficient, healable flexible shape memory-based supercapacitors were unprecedentedly explored by a transfer process, in which the conductive nano-carbon networks were decorated with pseudocapacitance materials, followed by embedding them into a shape memory polymer matrix containing healing reagents. The composite exhibited flexibility, supercapacitance and self-healing capability originating from the shape memory effect and healing reagent. The morphologies, thermal, mechanical and capacitive properties, and the self-healability of the composite were investigated. In particular, the influence of the compositions on the healing efficiency was considered. The optimized composite exhibited good capacitance (27.33 mF cm−1), stability (only 4.08% capacitance loss after 1500 cycles) and healable property (up to 93% of the healing efficiency). The findings demonstrated how to endow the flexible polymeric electronics with healable bio-mimetic properties and may greatly benefit the application of intelligent polymers in the field of multi-functional electrical materials
Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process
The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert) with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman), which showed a relatively weak susceptibility. Gibberellin (GA) levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA). Higher zeatin riboside (ZR) content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA) content, polyphenol oxidase (PPO) and peroxidase (POD) activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively
Photosynthetic Response of Soybean Leaf to Wide Light-Fluctuation in Maize-Soybean Intercropping System
In maize-soybean intercropping system, soybean plants will be affected by the wide light-fluctuation, which resulted from the shading by maize plants, as the shading of maize the light is not enough for soybean in the early morning and late afternoon, but at noon, the light is strong as the maize shading disappeared. The objective of this study is to evaluate the photosynthetic response of soybean leaf to the wide light-fluctuation. The data of diurnal variation of photosynthetic characters showed that the photosynthetic rate of intercropped soybean was weaker than that of monocropped soybean. The chlorophyll content, ratio of chlorophyll a/b, and AQE (apparent quantum efficiency) were increased and Rd (dark respiration rate) was decreased for the more efficient interception and absorption of light and carbon gain in intercropping. δRo (The efficiency/probability with which an electron from the intersystem electron carriers was transferred to reduce end electron acceptors at the PSI acceptor side) and φRo (the quantum yield for the reduction of the end electron acceptors at the PSI acceptor side) in intercropped soybean leaf were lower compared to those in monocropped one, which showed that the acceptor side of PSI might be inhibited, and also it was the main reason that soybean plants showed a low photosynthetic capacity in intercropping. ψEo (the efficiency/probability with an electron moves further than QA-) in monocropping and intercropping decreased 5.8, and 35.7%, respectively, while φEo (quantum yield for electron transport) decreased 27.7 and 45.3% under the high radiation at noon, which suggested that the acceptor side of PSII was inhibited, while the NPQ became higher. These were beneficial to dissipate excess excitation energy in time, and protect the photosynthetic apparatus against photo-damage. The higher performance index on the absorption basis (PIABS) and lower δRo, φRo, ψEo, and φEo of intercropped soybeans compared to monocropping under high radiation indicated that the electron transfer of intercropped soybean was inhibited more seriously and intercropped soybean adjusted the electron transport between PSII to PSI to adapt the light-fluctuation. Higher NPQ capacity of intercropped soybeans played a key role in keeping the leaf with a better physiological flexibility under the high radiation