17 research outputs found

    Effect of Lipids in Yak Muscle under Different Feeding Systems on Meat Quality Based on Untargeted Lipidomics

    No full text
    The effect of lipids on yak meat quality and volatile flavor compounds in yak meat under graze feeding (GF) and stall feeding (SF) was explored using untargeted lipidomics based on liquid chromatography–mass spectrometry (LC-MS) in this study. First, the volatile flavor compounds in longissimus dorsi (LD) of SF and GF yaks were detected by gas chromatography–mass spectrometry (GC-MS). In total 49 and 39 volatile flavor substances were detected in the LD of GF and SF yaks, respectively. The contents of pelargonic aldehyde, 3-hydroxy-2-butanone and 1-octen-3-ol in the LD of both GF and SF yaks were the highest among all detected volatile flavor compounds, and the leading volatile flavor substances in yak LD were aldehydes, alcohols and ketones. In total, 596 lipids were simultaneously identified in the LD of SF and GF yaks, and the leading lipids in the LD of both GF and SF yaks were sphingolipids (SPs), glycerolipids (GLs) and glycerophospholipids (GPs). Seventy-five significantly different lipids (SDLs) between GF and SF yaks were identified in the LD. The high content of TG(16:1/18:1/18:1), TG(16:0/17:1/18:1) and TG(16:0/16:1/18:1), PE(18:0/22:4) and PC(18:2/18:0) can improve the a* (redness) and tenderness of yak muscle. The changes in volatile flavor compounds in yak muscle were mainly caused by TG(18:1/18:1/18:2), TG(18:0/18:1/18:1), TG(16:0/17:1/18:1), TG(16:0/16:1/18:1), PC(18:2/18:0), TG(16:1/18:1/18:1), PI(18:0/20:4), TG(16:1/16:1-/18:1) and TG(17:0/18:1/18:1). The above results provide a theoretical basis for improving yak meat quality from the perspective of intramuscular lipids

    An Efficient and Accurate Convolution-Based Similarity Measure for Uncertain Trajectories

    No full text
    With the rapid development of localization techniques and the prevalence of mobile devices, massive amounts of trajectory data have been generated, playing essential roles in areas of user analytics, smart transportation, and public safety. Measuring trajectory similarity is one of the fundamental tasks in trajectory analytics. Although considerable research has been conducted on trajectory similarity, the majority of existing approaches measure the similarity between two trajectories by calculating the distance between aligned locations, leading to challenges related to uncertain trajectories (e.g., low and heterogeneous data sampling rates, as well as location noise). To address these challenges, we propose Contra, a convolution-based similarity measure designed specifically for uncertain trajectories. The main focus of Contra is to identify the similarity of trajectory shapes while disregarding the time/order relevance of each record within the trajectory. To this end, it leverages a series of convolution and pooling operations to extract high-level geo-information from trajectories, and subsequently compares their similarities based on these extracted features. Moreover, we introduce efficient trajectory index strategies to enhance the computational efficiency of our proposed measure. We conduct comprehensive experiments on two trajectory datasets to evaluate the performance of our proposed approach. The experiments on both datasets show the effectiveness and efficiency of our approach. Specifically, the mean rank of Contra is 3 times better than the state-of-the-art approaches, and the precision of Contra surpasses baseline approaches by 20–40%

    Analysis of Chromatin Openness in Testicle Tissue of Yak and Cattle-Yak

    No full text
    Cattle-yak, a crossbreed of yak and cattle, which can exhibit obvious heterosis and can adapt to the harsh environmental conditions of the Qinghai Tibet Plateau (QTP). However, F1 cattle-yak were found to be sterile because they were unable to produce sperm, which adversely restricted the fixation of heterosis. Many prior attempts have been made to decipher the mechanism underlying the spermatogenesis stagnation of cattle-yak. However, the open chromatin region (OCR) map of yak and cattle-yak testes has not been generated yet. Here, we have analyzed the OCRs landscape of testicular tissues of cattle-yak and yaks by performing ATAC-seq technology. The OCRs of cattle-yak and yak testes displayed similar genome distribution and showed priority in intergenic regions, introns and promoters. The pathway enrichment analysis indicated that the differential OCRs-related genes were involved in spermatogenesis, involving the cell cycle, as well as Hippo, mTOR, MAPK, Notch, and Wnt signaling pathways. The integration of ATAC-seq and mRNA-seq indicated that the majority of the gene expression levels were positively correlated with chromatin openness. At the same time, we have identified a number of transcription factors (TFs) related to spermatogenesis and the differential expression of these TFs may contribute to the spermatogenesis stagnation of the cattle-yak. Overall, the findings of this study provide valuable information for advancing the research related to yak crossbreeding improvement and sperm production stagnation of cattle-yak

    The Effect of the Feeding System on Fat Deposition in Yak Subcutaneous Fat

    No full text
    Fat deposition is very important to the growth and reproduction of yaks. In this study, the effect of the feeding system on fat deposition in yaks was explored by transcriptomics and lipidomics. The thickness of the subcutaneous fat in yaks under stall (SF) and graze feeding (GF) was evaluated. The transcriptomes and lipidomes of the subcutaneous fat in yaks under different feeding systems were detected by RNA-sequencing (RNA-Seq) and non-targeted lipidomics based on ultrahigh-phase liquid chromatography tandem mass spectrometry (UHPLC-MS), respectively. The differences in lipid metabolism were explored, and the function of differentially expressed genes (DEGs) was evaluated by gene ontology (GO) and Kyoto encyclopedia of genes and genome (KEGG) analysis. Compared with GF yaks, SF yaks possessed stronger fat deposition capacity. The abundance of 12 triglycerides (TGs), 3 phosphatidylethanolamines (PEs), 3 diglycerides (DGs), 2 sphingomyelins (SMs) and 1 phosphatidylcholine (PC) in the subcutaneous fat of SF and GF yaks was significantly different. Under the mediation of the cGMP–PKG signaling pathway, the blood volume of SF and GF yaks may be different, which resulted in the different concentrations of precursors for fat deposition, including non-esterified fatty acid (NEFA), glucose (GLU), TG and cholesterol (CH). The metabolism of C16:0, C16:1, C17:0, C18:0, C18:1, C18:2 and C18:3 in yak subcutaneous fat was mainly realized under the regulation of the INSIG1, ACACA, FASN, ELOVL6 and SCD genes, and TG synthesis was regulated by the AGPAT2 and DGAT2 genes. This study will provide a theoretical basis for yak genetic breeding and healthy feeding

    Single-Cell Transcriptomics Analysis Reveals a Cell Atlas and Cell Communication in Yak Ovary

    No full text
    Yaks (Bos grunniens) are the only bovine species that adapt well to the harsh high-altitude environment in the Qinghai-Tibetan plateau. However, the reproductive adaptation to the climate of the high elevation remains to be elucidated. Cell composition and molecular characteristics are the foundation of normal ovary function which determines reproductive performance. So, delineating ovarian characteristics at a cellular molecular level is conducive to elucidating the mechanism underlying the reproductive adaption of yaks. Here, the single-cell RNA-sequencing (scRNA-seq) was employed to depict an atlas containing different cell types with specific molecular signatures in the yak ovary. The cell types were identified on the basis of their specifically expressed genes and biological functions. As a result, a cellular atlas of yak ovary was established successfully containing theca cells, stromal cells, endothelial cells, smooth muscle cells, natural killer cells, macrophages, and proliferating cells. A cell-to-cell communication network between the distinct cell types was constructed. The theca cells were clustered into five subtypes based on their biological functions. Further, CYP11A1 was confirmed as a marker gene for the theca cells by immunofluorescence staining. Our work reveals an ovarian atlas at the cellular molecular level and contributes to providing insights into reproductive adaption in yaks

    Single-Cell Transcriptomics Analysis Reveals a Cell Atlas and Cell Communication in Yak Ovary

    No full text
    Yaks (Bos grunniens) are the only bovine species that adapt well to the harsh high-altitude environment in the Qinghai-Tibetan plateau. However, the reproductive adaptation to the climate of the high elevation remains to be elucidated. Cell composition and molecular characteristics are the foundation of normal ovary function which determines reproductive performance. So, delineating ovarian characteristics at a cellular molecular level is conducive to elucidating the mechanism underlying the reproductive adaption of yaks. Here, the single-cell RNA-sequencing (scRNA-seq) was employed to depict an atlas containing different cell types with specific molecular signatures in the yak ovary. The cell types were identified on the basis of their specifically expressed genes and biological functions. As a result, a cellular atlas of yak ovary was established successfully containing theca cells, stromal cells, endothelial cells, smooth muscle cells, natural killer cells, macrophages, and proliferating cells. A cell-to-cell communication network between the distinct cell types was constructed. The theca cells were clustered into five subtypes based on their biological functions. Further, CYP11A1 was confirmed as a marker gene for the theca cells by immunofluorescence staining. Our work reveals an ovarian atlas at the cellular molecular level and contributes to providing insights into reproductive adaption in yaks

    Comparative Analysis of Epididymis Cauda of Yak before and after Sexual Maturity

    No full text
    Epididymis development is the basis of male reproduction and is a crucial site where sperm maturation occurs. In order to further understand the epididymal development of yak and how to regulate sperm maturation, we conducted a multi-omics analysis. We detected 2274 differential genes, 222 differential proteins and 117 co-expression genes in the cauda epididymis of yak before and after sexual maturity by RNA-seq and proteomics techniques, which included TGFBI, COL1A1, COL1A2, COL3A1, COL12A1, SULT2B1, KRT19, and NPC2. These high abundance genes are mainly related to cell growth, differentiation, adhesion and sperm maturation, and are mainly enriched via extracellular matrix receptor interaction, protein differentiation and absorption, and lysosome and estrogen signaling pathways. The abnormal expression of these genes may lead to the retardation of epididymal cauda development and abnormal sperm function in yak. In conclusion, through single and combined analysis, we provided a theoretical basis for the development of the yak epididymal cauda, sperm maturation, and screening of key genes involved in the regulation of male yak reproduction

    Antibacterial Halloysite‐Modified Chitosan/Polyvinylpyrrolidone Nanofibers for Ultrasensitive Self‐Powered Motion Monitoring

    No full text
    Abstract High flexibility, porosity, and antibacterial activity are extremely desired for wearable health monitoring, which is beneficial to simultaneously promote wearing comfort and safety. In this study, an antibacterial nanofibers‐based triboelectric generator (AN‐TENG) composed of the flexible chitosan/polyvinylpyrrolidone modified with halloysite nanotubes (CTS/PVP/HNTs) nanofibers and cube‐arrays structured Ecoflex film is proposed for simultaneously energy harvesting and self‐powered human motion monitoring. The open‐circuit voltage (280 V), short‐circuit current (3.98 ΌA), and transferred charge (51 nC) of the CTS/PVP/HNTs nanofibers TENG at the optimal compound concentration are increased by 90.8%, 86.92%, and 96.2%, respectively, compared to the CTS/PVP nanofibers one (size: 3 cm × 3 cm, mechanical force: 10 N @1 Hz), revealing good real‐time monitoring ability for human wrist, elbow, and finger motion. An antibacterial test is carried out to evaluate the antibacterial activity and the antibacterial rate of the nanofibers against Escherichia coli (ATCC 8739) and Staphylococcus aureus (ATCC 6538) based on the current national standard GB/T 31402–2015, indicating good antibacterial properties of the nanofibers. This research offers an ingenious strategy to establish an antibacterial nanofibers‐based TENG for self‐powered motion monitoring and energy harvesting and offers a new insight to improve the practical security of wearable electronic devices

    Single-Cell RNA Sequencing Reveals Atlas of Yak Testis Cells

    No full text
    Spermatogenesis is a complex process that involves proliferation and differentiation of diploid male germ cells into haploid flagellated sperm and requires intricate interactions between testicular somatic cells and germ cells. The cellular heterogeneity of this process presents a challenge in analyzing the different cell types at various developmental stages. Single-cell RNA sequencing (scRNA-seq) provides a useful tool for exploring cellular heterogeneity. In this study, we performed a comprehensive and unbiased single-cell transcriptomic study of spermatogenesis in sexually mature 4-year-old yak using 10× Genomics scRNA-seq. Our scRNA-seq analysis identified six somatic cell types and various germ cells, including spermatogonial stem cells, spermatogonia, early-spermatocytes, late-spermatocytes, and spermatids in yak testis. Pseudo-timing analysis showed that Leydig and myoid cells originated from common progenitor cells in yaks. Moreover, functional enrichment analysis demonstrated that the top expressed genes in yak testicular somatic cells were significantly enriched in the cAMP signaling pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, and ECM receptor interactions. Throughout the spermatogenesis process, genes related to spermatogenesis, cell differentiation, DNA binding, and ATP binding were expressed. Using immunohistochemical techniques, we identified candidate marker genes for spermatogonial stem cells and Sertoli cells. Our research provides new insights into yak spermatogenesis and the development of various types of cells in the testis, and presents more reliable marker proteins for in vitro culture and identification of yak spermatogonial stem cells in the later stage
    corecore