33 research outputs found
Cytokine-Induced Killer Cells As Pharmacological Tools for Cancer Immunotherapy
Cytokine-induced killer (CIK) cells are a heterogeneous population of effector CD3+CD56+ natural killer T cells, which can be easily expanded in vitro from peripheral blood mononuclear cells. CIK cells work as pharmacological tools for cancer immunotherapy as they exhibit MHC-unrestricted, safe, and effective antitumor activity. Much effort has been made to improve CIK cells cytotoxicity and treatments of CIK cells combined with other antitumor therapies are applied. This review summarizes some strategies, including the combination of CIK with additional cytokines, dendritic cells, check point inhibitors, antibodies, chemotherapeutic agents, nanomedicines, and engineering CIK cells with a chimeric antigen receptor. Furthermore, we briefly sum up the clinical trials on CIK cells and compare the effect of clinical CIK therapy with other immunotherapies. Finally, further research is needed to clarify the pharmacological mechanism of CIK and provide evidence to formulate uniform culturing criteria for CIK expansion
Glioma in Schizophrenia: Is the Risk Higher or Lower?
Whether persons with schizophrenia have a higher or lower incidence of cancer has been discussed for a long time. Due to the complex mechanisms and characteristics of different types of cancer, it is difficult to evaluate the exact relationship between cancers and schizophrenia without considering the type of tumor. Schizophrenia, a disabling mental illness that is now recognized as a neurodevelopmental disorder, is more correlated with brain tumors, such as glioma, than other types of tumors. Thus, we mainly focused on the relationship between schizophrenia and glioma morbidity. Glioma tumorigenesis and schizophrenia may share similar mechanisms; gene/pathway disruption would affect neurodevelopment and reduce the risk of glioma. The molecular defects of disrupted-in-schizophrenia-1 (DISC1), P53, brain-derived neurotrophic factor (BDNF) and C-X-C chemokine receptors type 4 (CXCR4) involved in schizophrenia pathogenesis might play opposite roles in glioma development. Many microRNAs (miRNAs) such as miR-183, miR-9, miR-137 and miR-126 expression change may be involved in the cross talk between glioma prevalence and schizophrenia. Finally, antipsychotic drugs may have antitumor effects. All these factors show that persons with schizophrenia have a decreased incidence of glioma; therefore, epidemiological investigation and studies comparing genetic and epigenetic aberrations involved in both of these complex diseases should be performed. These studies can provide more insightful knowledge about glioma and schizophrenia pathophysiology and help to determine the target/strategies for the prevention and treatment of the two diseases
TAT-Ngn2 Enhances Cognitive Function Recovery and Regulates Caspase-Dependent and Mitochondrial Apoptotic Pathways After Experimental Stroke
Neurogenin-2 (Ngn2) is a basic helix-loop-helix (bHLH) transcription factor that contributes to the identification and specification of neuronal fate during neurogenesis. In our previous study, we found that Ngn2 plays an important role in alleviating neuronal apoptosis, which may be viewed as an attractive candidate target for the treatment of cerebral ischemia. However, novel strategies require an understanding of the function and mechanism of Ngn2 in mature hippocampal neurons after global cerebral ischemic injury. Here, we found that the expression of Ngn2 decreased in the hippocampus after global cerebral ischemic injury in mice and in primary hippocampal neurons after oxygen glucose deprivation (OGD) injury. Then, transactivator of transcription (TAT)-Ngn2, which was constructed by fusing a TAT domain to Ngn2, was effectively transported and incorporated into hippocampal neurons after intraperitoneal (i.p.) injection and enhanced cognitive functional recovery in the acute stage after reperfusion. Furthermore, TAT-Ngn2 alleviated hippocampal neuronal damage and apoptosis, and inhibited the cytochrome C (CytC) leak from the mitochondria to the cytoplasm through regulating the expression levels of brain-derived neurotrophic factor (BDNF), phosphorylation tropomyosin-related kinase B (pTrkB), Bcl-2, Bax and cleaved caspase-3 after reperfusion injury in vivo and in vitro. These findings suggest that the downregulation of Ngn2 expression may have an important role in triggering brain injury after ischemic stroke and that the neuroprotection of TAT-Ngn2 against stroke might involve the modulation of BDNF-TrkB signaling that regulates caspase-dependent and mitochondrial apoptotic pathways, which may be an attractive therapeutic strategy for cerebral ischemic injury
Electroacupuncture pretreatment attenuates cerebral ischemic injury through α7 nicotinic acetylcholine receptor-mediated inhibition of high-mobility group box 1 release in rats
<p>Abstract</p> <p>Background</p> <p>We have previously reported that electroacupuncture (EA) pretreatment induced tolerance against cerebral ischemic injury, but the mechanisms underlying this effect of EA are unknown. In this study, we assessed the effect of EA pretreatment on the expression of α7 nicotinic acetylcholine receptors (α7nAChR), using the ischemia-reperfusion model of focal cerebral ischemia in rats. Further, we investigated the role of high mobility group box 1 (HMGB1) in neuroprotection mediated by the α7nAChR and EA.</p> <p>Methods</p> <p>Rats were treated with EA at the acupoint "Baihui (GV 20)" 24 h before focal cerebral ischemia which was induced for 120 min by middle cerebral artery occlusion. Neurobehavioral scores, infarction volumes, neuronal apoptosis, and HMGB1 levels were evaluated after reperfusion. The α7nAChR agonist PHA-543613 and the antagonist α-bungarotoxin (α-BGT) were used to investigate the role of the α7nAChR in mediating neuroprotective effects. The roles of the α7nAChR and HMGB1 release in neuroprotection were further tested in neuronal cultures exposed to oxygen and glucose deprivation (OGD).</p> <p>Results</p> <p>Our results showed that the expression of α7nAChR was significantly decreased after reperfusion. EA pretreatment prevented the reduction in neuronal expression of α7nAChR after reperfusion in the ischemic penumbra. Pretreatment with PHA-543613 afforded neuroprotective effects against ischemic damage. Moreover, EA pretreatment reduced infarct volume, improved neurological outcome, inhibited neuronal apoptosis and HMGB1 release following reperfusion, and the beneficial effects were attenuated by α-BGT. The HMGB1 levels in plasma and the penumbral brain tissue were correlated with the number of apoptotic neurons in the ischemic penumbra. Furthermore, OGD in cultured neurons triggered HMGB1 release into the culture medium, and this effect was efficiently suppressed by PHA-543,613. Pretreatment with α-BGT reversed the inhibitory effect of PHA-543,613 on HMGB1 release.</p> <p>Conclusion</p> <p>These data demonstrate that EA pretreatment strongly protects the brain against transient cerebral ischemic injury, and inhibits HMGB1 release through α7nAChR activation in rats. These findings suggest the novel potential for stroke interventions harnessing the anti-inflammatory effects of α7nAChR activation, through acupuncture or pharmacological strategies.</p
Suppression of Tumorigenicity 5 Ameliorates Tumor Characteristics of Invasive Breast Cancer Cells via ERK/JNK Pathway
<jats:sec><jats:title>Background</jats:title><jats:p>Suppression of tumorigenicity 5 (ST5) has been considered as a tumor suppressor gene in HeLa tumor cells. However, its role in the progression of breast cancer remains vague.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>Online database analysis was determined by Oncomine and Breast Cancer Gene-Expression Miner v4.4 (bc-GenExMiner v4.4). Tumor biology behaviors were measured by MTT assay, wound healing model, Transwell and Flow cytometry assays. Methylation-specific PCR (MSP) was employed to detect promoter methylation.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Low level of ST5 was observed in breast cancer specimens, particularly in recurrent, invasive breast cancer cases compared to para-carcinoma tissue or non-invasive breast cancer. The downregulation of ST5 was also proved in MDA-MB-231 and SKBR3 cell lines with a high invasive capability as compared to MCF-7 cell with a low invasive capability. ST5 was negatively associated with pathological stages of breast cancer. ST5-downregulation promoted, while ST5-upregulation inhibited the progression of cell proliferation, cell cycle and migration of MDA-MB-231 cells. Additionally, ST5 knockdown inhibited, whereas ST5 overexpression promoted apoptosis of MDA-MB-231 cells. However, ST5 modification, either upregulation or downregulation, had no significant impact on tumor behaviors of MCF-7 cells. Mechanistically, ST5 protein ablation activated, while ST5-upregulation repressed the activities of phosphorylated ERK1/2 and JNK, and subsequently the expression of c-Myc. PD98059-mediated ERK1/2 inhibition abolished the stimulatory effects of ST5-depletion on ERK1/2/JNK/c-Myc signaling axis, and ST5 depletion-mediated cell over-proliferation and migration. Of note, ST5 reduction in invasive breast cancer cells should implicate in the hypermethylation of <jats:italic>ST5</jats:italic> promoter region.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>Our findings suggest that ST5 potentially acts as a tumor suppressor gene in invasive breast cancer through regulating ERK/JNK signaling pathway and provide a novel insight for breast cancer treatment.</jats:p></jats:sec>
Next-generation sequencing yields the complete mitochondrial genome of Pterygoplichthys pardalis (Loricariidae; Siluriformes)
In this study, we report the complete mitochondrial genome of Pterygoplichthys pardalis has derived by next-generation sequencing. The complete mitochondrial genome of P. pardalis contains 16,425 bp encompassing 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one control region (D-loop). The base composition is A 31.79%, C 26.89%, G 14.63%, and T 26.69%, and its gene arrangement is consistent with mitochondrial genomes derived from other representatives of Loricariidae. A phylogenetic tree of 24 Loricariidae species constructed based on the 13 coding genes shows that P. pardalis is clustered with other Pterygoplichthys genus. It suggests that the molecular classification results confirm its external morphological characteristics. These results have reference value for the further study of phylogenetic relationship, taxonomic classification, and phylogeography of Loricariidae
Use of starch-based fat replacers in foods as a strategy to reduce dietary intake of fat and risk of metabolic diseases
Cardiovascular disease (CVD) has emerged as one of the leading causes of death worldwide. Elevated blood cholesterol and low-density lipoprotein levels are crucial risk factors that contribute to the development of CVD and other metabolic diseases. Dietary fat is believed to be the key factor in modulating circulating cholesterol levels. Thus, reducing dietary intake of fat appears to be an effective strategy to reduce the risk of heart disease. Also, excessive intake of fat and high-calorie foods is also related to the development of obesity, which contributes to the development of CVD. Therefore, the consumption of low-fat low-calorie foods is part of a healthier dietary pattern. However, simply removing fat from foods may lead to compromised overall quality and reduced acceptance of the food products. Thus, fat replacers have emerged as ideal alternatives to dietary fat, which can not only reduce the overall fat and calorie content of the foods but also mimic the physiochemical properties of dietary fat. Starch-based fat replacers are one kind of fat mimetic that can be produced either chemically as modified starch or enzymatically as maltodextrins. Both modified starch and maltodextrins have been demonstrated to have a promising ability to improve the overall quality of reduced-fat foods. Modified starch granules act directly as fat globules in modulating the structure and sensory characteristics of the foods, whereas maltodextrins can form thermoreversible gels. Both modified starch granules and maltodextrins can create a fat-like mouthfeel and therefore are potential fat replacers. This review article aims to discuss the following topics: (a) the effect of carbohydrates and fat on human cardiovascular health and other disease risks, (b) the functionality of starch-based fat replacers in foods, (c) the applications of starch-based fat replacers in various foods, and (d) the current and future market value of starch-based fat replacers