16 research outputs found

    Multi-Cue Event Information Fusion for Pedestrian Detection With Neuromorphic Vision Sensors

    Get PDF
    Neuromorphic vision sensors are bio-inspired cameras that naturally capture the dynamics of a scene with ultra-low latency, filtering out redundant information with low power consumption. Few works are addressing the object detection with this sensor. In this work, we propose to develop pedestrian detectors that unlock the potential of the event data by leveraging multi-cue information and different fusion strategies. To make the best out of the event data, we introduce three different event-stream encoding methods based on Frequency, Surface of Active Event (SAE) and Leaky Integrate-and-Fire (LIF). We further integrate them into the state-of-the-art neural network architectures with two fusion approaches: the channel-level fusion of the raw feature space and decision-level fusion with the probability assignments. We present a qualitative and quantitative explanation why different encoding methods are chosen to evaluate the pedestrian detection and which method performs the best. We demonstrate the advantages of the decision-level fusion via leveraging multi-cue event information and show that our approach performs well on a self-annotated event-based pedestrian dataset with 8,736 event frames. This work paves the way of more fascinating perception applications with neuromorphic vision sensors

    Association between polymorphisms in the coagulation factor VII gene and coronary heart disease risk in different ethnicities: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have examined the association between polymorphisms in the coagulation factor VII gene and the risk of coronary heart disease (CHD), but those studies have been inconclusive. This study was conducted to assess the associations between these polymorphisms and CHD and evaluated the associations in different ethnicities.</p> <p>Methods</p> <p>Literature-based searching was conducted to collect data and two methods, namely fixed-effects and random-effects, were performed to pool the odds ratio (OR), together with the 95% confidence interval (CI). Publication bias and between-study heterogeneity were also examined.</p> <p>Results</p> <p>Thirty-nine case-control studies of the three polymorphisms, R353Q (rs6046), HVR4 and -323Ins10 (rs36208070) in factor VII gene and CHD were enrolled in this meta-analysis, including 9,151 cases of CHD and 14,099 controls for R353Q, 2,863 cases and 2,727 controls for HVR4, and 2,862 cases and 4,240 controls for -323Ins10. Significant association was only found in Asian population for R353Q (Q vs R), with pooled OR of 0.70(95%CI: 0.55, 0.90). For the -323Ins10 polymorphism (10 vs 0), we found significant associations in both Asian and European populations, with pooled ORs of 0.74(95%CI: 0.61, 0.88) and 0.63(95%CI: 0.53, 0.74), respectively. Marginal significant association was found between HVR4 (H7 vs H5+H6) and CHD (OR = 0.88, 95% CI: 0.78, 1.00). There was no evidence of publication bias, but between-study heterogeneity was found in the analyses.</p> <p>Conclusions</p> <p>The -323Ins10 polymorphism in factor VII gene is significantly associated with CHD in both Asian and European populations, while R353Q polymorphism showed trend for association with CHD in Asians. Lack of association was found for HVR4 polymorphism. Further studies are needed to confirm the association, especially for -323Ins10 polymorphism.</p

    Unveiling blood pressure‐associated genes in aortic cells through integrative analysis of GWAS and RNA modification‐associated variants

    No full text
    Abstract Background Genome‐wide association studies (GWAS) have identified more than a thousand loci for blood pressure (BP). Functional genes in these loci are cell‐type specific. The aim of this study was to elucidate potentially functional genes associated with BP in the aorta through the utilization of RNA modification‐associated single‐nucleotide polymorphisms (RNAm‐SNPs). Methods Utilizing large‐scale genetic data of 757,601 individuals from the UK Biobank and International Consortium of Blood Pressure consortium, we identified associations between RNAm‐SNPs and BP. The association between RNAm‐SNPs, gene expression, and BP were examined. Results A total of 355 RNAm‐SNPs related to m6A, m1A, m5C, m7G, and A‐to‐I modification were associated with BP. The related genes were enriched in the pancreatic secretion pathway and renin secretion pathway. The BP GWAS signals were significantly enriched with m6A‐SNPs, highlighting the potential functional relevance of m6A in physiological processes influencing BP. Notably, m6A‐SNPs in CYP11B1, PDE3B, HDAC7, ACE, SLC4A7, PDE1A, FRK, MTHFR, NPPA, CACNA1D, and HDAC9 were identified. Differential methylation and differential expression of the BP genes in FTO‐overexpression and METTL14‐knockdown vascular smooth muscle cells were detected. RNAm‐SNPs were associated with ascending and descending aorta diameter and the genes showed differential methylation between aortic dissection (AD) cases and controls. In scRNA‐seq study, we identified ARID5A, HLA‐DPB1, HLA‐DRA, IRF1, LINC01091, MCL1, MLF1, MLXIPL, NAA16, NADK, RERG, SRM, and USP53 as differential expression genes for AD in aortic cells. Conclusion The present study identified RNAm‐SNPs in BP loci and elucidated the associations between the RNAm‐SNPs, gene expression, and BP. The identified BP‐associated genes in aortic cells were associated with AD

    RNA Modification-Related Genetic Variants in Genomic Loci Associated with Bone Mineral Density and Fracture

    No full text
    Genome-wide association studies (GWASs) have identified more than 500 loci for bone mineral density (BMD), but functional variants in these loci are less known. The aim of this study was to identify RNA modification-related SNPs (RNAm-SNPs) for BMD in GWAS loci. We evaluated the association of RNAm-SNPs with quantitative heel ultrasound BMD (eBMD) in 426,824 individuals, femoral neck (FN) and lumbar spine (LS) BMD in 32,961 individuals and fracture in ~1.2 million individuals. Furthermore, we performed functional enrichment, QTL and Mendelian randomization analyses to support the functionality of the identified RNAm-SNPs. We found 300 RNAm-SNPs significantly associated with BMD, including 249 m6A-, 28 m1A-, 3 m5C-, 7 m7G- and 13 A-to-I-related SNPs. m6A-SNPs in OP susceptibility genes, such as WNT4, WLS, SPTBN1, SEM1, FUBP3, LRP5 and JAG1, were identified and functional enrichment for m6A-SNPs in the eBMD GWAS dataset was detected. eQTL signals were found for nearly half of the identified RNAm-SNPs, and the affected gene expression was associated with BMD and fracture. The RNAm-SNPs were also associated with the plasma levels of proteins in cytokine-cytokine receptor interaction, PI3K-Akt signaling, NF-kappa B signaling and MAPK signaling pathways. Moreover, the plasma levels of proteins (CCL19, COL1A1, CTSB, EFNA5, IL19, INSR, KDR, LIFR, MET and PLXNB2) in these pathways were found to be associated with eBMD in Mendelian randomization analysis. This study identified functional variants and potential causal genes for BMD and fracture in GWAS loci and suggested that RNA modification may play an important role in osteoporosis

    Identification of PBMC-expressed miRNAs for rheumatoid arthritis

    No full text
    Post-transcriptional regulation by miRNAs plays an important role in the pathogenesis of rheumatoid arthritis (RA), however, the roles of specific miRNAs in RA pathogenesis remain largely unclear. This study performed dual-omics (miRNA and mRNA) integration analysis and in-depth cellular and molecular functional exploration to identify novel RA-associated miRNAs and to understand their underlying pathogenic mechanism. Based on the miRNA and mRNA expression profiles in peripheral blood mononuclear cells (PBMCs) from a discovery sample set (25 RA cases and 18 healthy controls), 18 differentially expressed miRNAs (DEMIRs) (|Fold-change|>2 and P < 0.05) were identified and corresponding interaction networks of DEMIRs and mRNA were constructed. After the expression validation of the DEMIRs in a validation sample set (35 RA cases and 35 healthy controls), miR-99b-5p was highlighted. The over-expression of newly discovered miR-99b-5p is able to suppress T cell apoptosis, promote cell proliferation and activation, increase expression of proinflammatory cytokines (IL-2, IL-6, TNF-α, and IFN-γ), and inhibit expression of its target genes mTOR and RASSF4. This study comprehensively identified PBMC-expressed miRNAs along with corresponding regulatory networks significant for RA and discovered miR-99b-5p as a novel post-transcriptional mediator involved in RA pathogenesis. The findings improved our understanding of RA pathogenesis and provided novel insights into the molecular mechanisms underlying RA pathogenesis

    Data_Sheet_1_Coronary artery disease risk factors affected by RNA modification-related genetic variants.xlsx

    No full text
    BackgroundSingle nucleotide polymorphisms that affect RNA modification (RNAm-SNPs) may have functional roles in coronary artery disease (CAD). The aim of this study was to identify RNAm-SNPs in CAD susceptibility loci and highlight potential risk factors.MethodsCAD-associated RNAm-SNPs were identified in the CARDIoGRAMplusC4D and UK Biobank genome-wide association studies. Gene expression and circulating protein levels affected by the RNAm-SNPs were identified by QTL analyses. Cell experiments and Mendelian randomization (MR) methods were applied to test whether the gene expression levels were associated with CAD.ResultsWe identified 81 RNAm-SNPs that were associated with CAD or acute myocardial infarction (AMI), including m6A-, m1A-, m5C-, A-to-I- and m7G-related SNPs. The m6A-SNPs rs3739998 in JCAD, rs148172130 in RPL14 and rs12190287 in TCF21 and the m7G-SNP rs186643756 in PVT1 were genome-wide significant. The RNAm-SNPs were associated with gene expression (e.g., MRAS, DHX36, TCF21, JCAD and SH2B3), and the expression levels were associated with CAD. Differential m6A methylation and differential expression in FTO-overexpressing human aorta smooth muscle cells and peripheral blood mononuclear cells of CAD patients and controls were detected. The RNAm-SNPs were associated with circulating levels of proteins with specific biological functions, such as blood coagulation, and the proteins (e.g., cardiotrophin-1) were confirmed to be associated with CAD and AMI in MR analyses.ConclusionThe present study identified RNAm-SNPs in CAD susceptibility genes, gene expression and circulating proteins as risk factors for CAD and suggested that RNA modification may play a role in the pathogenesis of CAD.</p

    Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension

    No full text
    Hypertension is a common disorder and the leading risk factor for cardiovascular disease and premature deaths worldwide. Genome-wide association studies (GWASs) in the European population have identified multiple chromosomal regions associated with blood pressure, and the identified loci altogether explain only a small fraction of the variance for blood pressure. The differences in environmental exposures and genetic background between Chinese and European populations might suggest potential different pathways of blood pressure regulation. To identify novel genetic variants affecting blood pressure variation, we conducted a meta-analysis of GWASs of blood pressure and hypertension in 11 816 subjects followed by replication studies including 69 146 additional individuals. We identified genome-wide significant (P &lt; 5.0 x 10(-8)) associations with blood pressure, which included variants at three new loci (CACNA1D, CYP21A2, and MED13L) and a newly discovered variant near SLC4A7. We also replicated 14 previously reported loci, 8 (CASZ1, MOV10, FGF5, CYP17A1, SOX6, ATP2B1, ALDH2, and JAG1) at genome-wide significance, and 6 (FIGN, ULK4, GUCY1A3, HFE, TBX3-TBX5, and TBX3) at a suggestive level of P = 1.81 x 10(-3) to 5.16 x 10(-8). These findings provide new mechanistic insights into the regulation of blood pressure and potential targets for treatments.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000350137900021&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Biochemistry &amp; Molecular BiologyGenetics &amp; HereditySCI(E)[email protected]
    corecore