24 research outputs found

    The Impact of Social Culture Environment for Modern Science Development: Based on the Understanding of Merton's Dissertation

    Get PDF
    In the ages of Big Science and under the situation of advocating an innovative society, it’s very significant to re-read the Merton’s Dissertation named ″Science, Technology and Society in the 17th Century England″ and explore fascination of thought and modern value in the classics which was recognized as a work of sociology of science. Along the thinking logic of Merton’s text, we make the history of reduction and in-depth analysis of the England social culture environment in 17th century from three aspects of politics, economy and culture. And with this a base point, some important influences of Social Culture Environment to the rise and development of Modern Science are fully discussed from three perspectives which are the driving force of modern science, the turn of scientific research fields and its interaction mechanism

    Spreading of Cell Aggregates on Zwitterion-Modified Chitosan Films

    Get PDF
    The sulfobetaine (SB) moiety, which comprises a quaternary ammonium group linked to a negatively charged sulfonate ester, is known to impart nonfouling properties to interfaces coated with polysulfobetaines or grafted with SB-polymeric brushes. Increasingly, evidence emerges that the SB group is, overall, a better antifouling group than the phosphorylcholine (PC) moiety extensively used in the past. We report here the synthesis of a series of SB-modified chitosans (CH-SB) carrying between 20 and 40 mol % SB per monosaccharide unit. Chitosan (CH) itself is a naturally derived copolymer of glucosamine and N-acetyl-glucosamine linked with a beta-1,4 bond. Analysis by quartz crystal microbalance with dissipation (QCM-D) indicates that CH-SB films (thickness similar to 20 nm) resist adsorption of bovine serum albumin (BSA) with increasing efficiency as the SB content of the polymer augments (surface coverage similar to 15 mu g cm(-2) for films of CH with 40 mol % SB). The cell adhesivity of CH-SB films coated on glass was assessed by determining the spreading dynamics of CT26 cell aggregates. When placed on chitosan films, known to be cell-adhesive, the CT26 cell aggregates spread by forming a cell monolayer around them. The spreading of CT26 cell aggregates on zwitterion-modified chitosans films is thwarted remarkably. In the cases of CH-SB30 and CH-SB40 films, only a few isolated cells escape from the aggregates. The extent of aggregate spreading, quantified based on the theory of liquid wetting, provides a simple in vitro assay of the nonfouling properties of substrates toward specific cell lines. This assay can be adopted to test and compare the fouling characteristics of substrates very different from the chemical viewpoint.Peer reviewe

    Hydrodynamic Delivery of Chitosan-Folate-DNA Nanoparticles in Rats with Adjuvant-Induced Arthritis

    Get PDF
    50 kDa chitosan was conjugated with folate, a specific tissue-targeting ligand. Nanoparticles such as chitosan-DNA and folate-chitosan-DNA were prepared by coacervation process. The hydrodynamic intravenous injection of nanoparticles was performed in the right posterior paw in normal and arthritic rats. Our results demonstrated that the fluorescence intensity of DsRed detected was 5 to 12 times more in the right soleus muscle and in the right gastro muscle than other tissue sections. β-galactosidase gene expression with X-gal substrate and folate-chitosan-plasmid nanoparticles showed best coloration in the soleus muscle. Treated arthritic animals also showed a significant decrease in paw swelling and IL-1β and PGE2 concentration in serum compared to untreated rats. This study demonstrated that a nonviral gene therapeutic approach using hydrodynamic delivery could help transfect more efficiently folate-chitosan-DNA nanoparticles in vitro/in vivo and could decrease inflammation in arthritic rats

    Efficient Nonviral Gene Therapy Using Folate-Targeted Chitosan-DNA Nanoparticles In Vitro

    Get PDF
    Nonviral cationic polymers like chitosan can be combined with DNA to protect it from degradation. The chitosan is a biocompatible, biodegradable, nontoxic, and cheap polycationic polymer with low immunogenicity. The objective of this study was to synthesize and then assess different chitosan-DNA nanoparticles and to select the best ones for selective in vitro transfection in human epidermoid carcinoma (KB) cell lines. It revealed that different combinations of molecular weight, the presence or absence of folic acid ligand, and different plasmid DNA sizes can lead to nanoparticles with various diameters and diverse transfection efficiencies. The intracellular trafficking, nuclear uptake, and localization are also studied by confocal microscopy, which confirmed that DNA was delivered to cell nuclei to be expressed

    The Ninth Visual Object Tracking VOT2021 Challenge Results

    Get PDF
    acceptedVersionPeer reviewe
    corecore