8,341 research outputs found

    The naturalness in the BLMSSM and B-LSSM

    Full text link
    In order to interpret the Higgs mass and its decays more naturally, we hope to intrude the BLMSSM and B-LSSM. In the both models, the right-handed neutrino superfields are introduced to better explain the neutrino mass problems. In addition, there are other superfields considered to make these models more natural than MSSM. In this paper, the method of χ2\chi^2 analyses will be adopted in the BLMSSM and B-LSSM to calculate the Higgs mass, Higgs decays and muon g−2g-2. With the fine-tuning in the region 0.67%−2.5%0.67\%-2.5\% and 0.67%−5%0.67\%-5\%, we can obtain the reasonable theoretical values that are in accordance with the experimental results respectively in the BLMSSM and B-LSSM. Meanwhile, the best-fitted benchmark points in the BLMSSM and B-LSSM will be acquired at minimal (χminBL)2=2.34736(\chi^{BL}_{min})^2 = 2.34736 and (χminB−L)2=2.47754(\chi^{B-L}_{min})^2 = 2.47754, respectively

    The order analysis for the two loop corrections to lepton MDM

    Full text link
    The experimental data of the magnetic dipole moment(MDM) of lepton(ee, μ\mu) is very exact. The deviation between the experimental data and the standard model prediction maybe come from new physics contribution. In the supersymmetric models, there are very many two loop diagrams contributing to the lepton MDM. In supersymmetric models, we suppose two mass scales MSHM_{SH} and MM with MSH≫MM_{SH}\gg M for supersymmetric particles. Squarks belong to MSHM_{SH} and the other supersymmetric particles belong to MM. We analyze the order of the contributions from the two loop diagrams. The two loop triangle diagrams corresponding to the two loop self-energy diagram satisfy Ward-identity, and their contributions possess particular factors. This work can help to distinguish the important two loop diagrams giving corrections to lepton MDM.Comment: 12 pages, 3 figure
    • …
    corecore