9,020 research outputs found

    The T2K Indication of Relatively Large theta_13 and a Natural Perturbation to the Democratic Neutrino Mixing Pattern

    Full text link
    The T2K Collaboration has recently reported a remarkable indication of the \nu_\mu -> \nu_e oscillation which is consistent with a relatively large value of \theta_{13} in the three-flavor neutrino mixing scheme. We show that it is possible to account for such a result of \theta_{13} by introducing a natural perturbation to the democratic neutrino mixing pattern, without or with CP violation. A testable correlation between \theta_{13} and \theta_{23} is predicted in this ansatz. We also discuss the Wolfenstein-like parametrization of neutrino mixing, and comment on other possibilities of generating sufficiently large \theta_{13} at the electroweak scale.Comment: RevTeX 8 page

    Can the Lepton Flavor Mixing Matrix Be Symmetric?

    Get PDF
    Current neutrino oscillation data indicate that the 3x3 lepton flavor mixing matrix V is likely to be symmetric about its V_{e3}-V_{\mu 2}-V_{\tau 1} axis. This off-diagonal symmetry corresponds to three pairs of {\it congruent} unitarity triangles in the complex plane. Terrestrial matter effects can substantially modify the genuine CP-violating parameter and off-diagonal asymmetries of V in realistic long-baseline experiments of neutrino oscillations.Comment: RexTex 14 pages (4 PS figures). More discussions adde

    Possible test for CPT invariance with correlated neutral B decays

    Full text link
    We study breakdown of CPTCPT symmetry which can occur in the decay process BBˉl±XfB \bar B \to l^\pm X^\mp f with ff being a CP eigenstate. In this process, the standard model expectations for time ordered semi-leptonic and hadronic events, i.e. which of the two decays takes place first, can be altered in the case that there is a violation of the CPTCPT symmetry. To illustrate this possibility, we identify and study several time integrated observables. We find that an experiment with 10910^{9} BBˉB\bar B pairs, has the capability for improving the bound on CPTCPT violating parameter or perhaps observe CPTCPT violation.Comment: Revised version to be published in PR

    Proper Matter Collineations of Plane Symmetric Spacetimes

    Get PDF
    We investigate matter collineations of plane symmetric spacetimes when the energy-momentum tensor is degenerate. There exists three interesting cases where the group of matter collineations is finite-dimensional. The matter collineations in these cases are either four, six or ten in which four are isometries and the rest are proper.Comment: 10 pages, LaTex, accepted for publication in Modern Physics Letters

    Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers

    Full text link
    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layers in electrolyte solutions with divalent counter-ions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: 1) SURF1 with uniform surface charges, 2) SURF2 with discrete point charges on the interface, and 3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function (ICDF) and potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes have significant impacts on the zeta potential, and thus the structure of electric double layers.Comment: 11 pages, 10 figures, some errors are change

    Flavor Mixing and CP Violation of Massive Neutrinos

    Full text link
    We present an overview of recent progress in the phenomenological study of neutrino masses, lepton flavor mixing and CP violation. We concentrate on the model-independent properties of massive neutrinos, both in vacuum and in matter. Current experimental constraints on the neutrino mass spectrum and the lepton flavor mixing parameters are summarized. The Dirac- and Majorana-like phases of CP violation, which are associated respectively with the long-baseline neutrino oscillations and the neutrinoless double beta decay, are discussed in detail. The seesaw mechanism, the leptogenesis scenario and the strategies to construct lepton mass matrices are briefly described. The features of flavor mixing between one sterile neutrino and three active neutrinos are also explored.Comment: Invited review. LaTex 76 pages (14 PS figures included

    Multi-wavelength emissions from the millisecond pulsar binary PSR J1023+0038 during an accretion active state

    Get PDF
    Recent observations strongly suggest that the millisecond pulsar binary PSR J1023+0038 has developed an accretion disk since 2013 June. We present a multi-wavelength analysis of PSR J1023+0038, which reveals that 1) its gamma-rays suddenly brightened within a few days in June/July 2013 and has remained at a high gamma-ray state for several months; 2) both UV and X-ray fluxes have increased by roughly an order of magnitude, and 3) the spectral energy distribution has changed significantly after the gamma-ray sudden flux change. Time variabilities associated with UV and X-rays are on the order of 100-500 seconds and 50-100 seconds, respectively. Our model suggests that a newly formed accretion disk due to the sudden increase of the stellar wind could explain the changes of all these observed features. The increase of UV is emitted from the disk, and a new component in gamma-rays is produced by inverse Compton scattering between the new UV component and pulsar wind. The increase of X-rays results from the enhancement of injection pulsar wind energy into the intra-binary shock due to the increase of the stellar wind. We also predict that the radio pulses may be blocked by the evaporated winds from the disk and the pulsar is still powered by rotation.Comment: 8 pages, 3 figures; accepted for publication in Ap

    Implementation of quantum gates based on geometric phases accumulated in the eigenstates of periodic invariant operators

    Get PDF
    We propose a new strategy to physically implement a universal set of quantum gates based on geometric phases accumulated in the nondegenerate eigenstates of a designated invariant operator in a periodic physical system. The system is driven to evolve in such a way that the dynamical phase shifts of the invariant operator eigenstates are the same (or {\it mod} 2π2\pi) while the corresponding geometric phases are nontrivial. We illustrate how this strategy to work in a simple but typical NMR-type qubit system.Comment: 4 page
    corecore