12,030 research outputs found

    Electronic structure and superconductivity of BiS2-based compounds LaO1-xFxBiS2

    Full text link
    Using the density-functional perturbation theory with structural optimization, we investigate the electronic structure, phonon spectra, and superconductivity of BiS2-based layered compounds LaO1-xFxBiS2. For LaO0.5F0.5BiS2, the calculated electron-phonon coupling constant is equal to lambda = 0.8, and obtained Tc = 9.1 K is very close to its experimental value, indicating that it is a conventional electron-phonon superconductor

    Universal Conductance Fluctuations in Mesoscopic Systems with Superconducting Leads: Beyond the Andreev Approximation

    Get PDF
    We report our investigation of the sample to sample fluctuation in transport properties of phase coherent normal metal-superconductor hybrid systems. Extensive numerical simulations were carried out for quasi-one dimensional and two dimensional systems in both square lattice (Fermi electron) as well as honeycomb lattice (Dirac electron). Our results show that when the Fermi energy is within the superconducting energy gap Δ\Delta, the Andreev conductance fluctuation exhibits a universal value (UCF) which is approximately two times larger than that in the normal systems. According to the random matrix theory, the electron-hole degeneracy (ehD) in the Andreev reflections (AR) plays an important role in classifying UCF. Our results confirm this. We found that in the diffusive regime there are two UCF plateaus, one corresponds to the complete electron-hole symmetry (with ehD) class and the other to conventional electron-hole conversion (ehD broken). In addition, we have studied the Andreev conductance distribution and found that for the fixed average conductance ,G>,G> the Andreev conductance distribution is a universal function that depends only on the ehD. In the localized regime, our results show that ehD continues to serve as an indicator for different universal classes. Finally, if normal transport is present, i.e., Fermi energy is beyond energy gap Δ\Delta, the AR is suppressed drastically in the localized regime by the disorder and the ehD becomes irrelevant. As a result, the conductance distribution is that same as that of normal systems

    Multiscale Technicolor and the Zbb-bar Vertex

    Full text link
    We estimate the correction to the Zbb-bar vertex arising from the exchanges of the sideways extended technicolor (ETC) boson and the flavor-diagonal ETC boson in the multiscale walking technicolor model. The obtained result is too large to explain the present data. However, if we introduce a new self- interaction for the top quark to induce the top quark condensate serving as the origin of the large top quark mass, the corrected R_b=Gamma_b/Gamma_h can be consistent with the recent LEP data. The corresponding correction to R_c=Gamma_c/Gamma_h is shown to be negligibly small.Comment: 9-page LaTex fil

    Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers

    Full text link
    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layers in electrolyte solutions with divalent counter-ions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: 1) SURF1 with uniform surface charges, 2) SURF2 with discrete point charges on the interface, and 3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function (ICDF) and potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes have significant impacts on the zeta potential, and thus the structure of electric double layers.Comment: 11 pages, 10 figures, some errors are change

    A new polymorphic material? Structural degeneracy of ZrMn_2

    Full text link
    Based on density functional calculations, we propose that ZrMn_2 is a polymorphic material. We predict that at low temperatures the cubic C15, and the hexagonal C14 and C36 structures of the Laves phase compound ZrMn_2 are nearly equally stable within 0.3 kJmol^{-1} or 30 K. This degeneracy occurs when the Mn atoms magnetize spontaneously in a ferromagnetic arrangement forming the states of lowest energy. From the temperature dependent free energies at T approx 160K we predict a transition from the most stable C15 to the C14 structure, which is the experimentally observed structure at elevated temperatures.Comment: 4 pages, 3 figure

    ISAR image matching and three-dimensional scattering imaging based on extracted dominant scatterers

    Get PDF
    This paper studies inverse synthetic aperture radar (ISAR) image matching and three-dimensional (3D) scattering imaging based on extracted dominant scatterers. In the condition of a long baseline between two radars, it is easy for obvious rotation, scale, distortion, and shift to occur between two-dimensional (2D) radar images. These problems lead to the difficulty of radar-image matching, which cannot be resolved by motion compensation and cross-correlation. What is more, due to the anisotropy, existing image-matching algorithms, such as scale invariant feature transform (SIFT), do not adapt to ISAR images very well. In addition, the angle between the target rotation axis and the radar line of sight (LOS) cannot be neglected. If so, the calibration result will be smaller than the real projection size. Furthermore, this angle cannot be estimated by monostatic radar. Therefore, instead of matching image by image, this paper proposes a novel ISAR imaging matching and 3D imaging based on extracted scatterers to deal with these issues. First, taking advantage of ISAR image sparsity, radar images are converted into scattering point sets. Then, a coarse scatterer matching based on the random sampling consistency algorithm (RANSAC) is performed. The scatterer height and accurate affine transformation parameters are estimated iteratively. Based on matched scatterers, information such as the angle and 3D image can be obtained. Finally, experiments based on the electromagnetic simulation software CADFEKO have been conducted to demonstrate the effectiveness of the proposed algorithm

    Emergence of long memory in stock volatility from a modified Mike-Farmer model

    Full text link
    The Mike-Farmer (MF) model was constructed empirically based on the continuous double auction mechanism in an order-driven market, which can successfully reproduce the cubic law of returns and the diffusive behavior of stock prices at the transaction level. However, the volatility (defined by absolute return) in the MF model does not show sound long memory. We propose a modified version of the MF model by including a new ingredient, that is, long memory in the aggressiveness (quantified by the relative prices) of incoming orders, which is an important stylized fact identified by analyzing the order flows of 23 liquid Chinese stocks. Long memory emerges in the volatility synthesized from the modified MF model with the DFA scaling exponent close to 0.76, and the cubic law of returns and the diffusive behavior of prices are also produced at the same time. We also find that the long memory of order signs has no impact on the long memory property of volatility, and the memory effect of order aggressiveness has little impact on the diffusiveness of stock prices.Comment: 6 pages, 6 figures and 1 tabl
    • …
    corecore