5,523 research outputs found

    Personalized Course Sequence Recommendations

    Full text link
    Given the variability in student learning it is becoming increasingly important to tailor courses as well as course sequences to student needs. This paper presents a systematic methodology for offering personalized course sequence recommendations to students. First, a forward-search backward-induction algorithm is developed that can optimally select course sequences to decrease the time required for a student to graduate. The algorithm accounts for prerequisite requirements (typically present in higher level education) and course availability. Second, using the tools of multi-armed bandits, an algorithm is developed that can optimally recommend a course sequence that both reduces the time to graduate while also increasing the overall GPA of the student. The algorithm dynamically learns how students with different contextual backgrounds perform for given course sequences and then recommends an optimal course sequence for new students. Using real-world student data from the UCLA Mechanical and Aerospace Engineering department, we illustrate how the proposed algorithms outperform other methods that do not include student contextual information when making course sequence recommendations

    Quantum entanglement in plasmonic waveguides with near-zero mode indices

    Full text link
    We investigate the quantum entanglement between two quantum dots in a plasmonic waveguide with near-zero mode index, considering the dependence of concurrence on interdot distance, quantum dot-waveguide frequency detuning and coupling strength ratio. High concurrence is achieved for a wide range of interdot distance due to the near-zero mode index, which largely relaxes the strict requirement of interdot distance in conventional dielectric waveguides or metal nanowires. The proposed quantum dot-waveguide system with near-zero phase variation along the waveguide near the mode cutoff frequency shows very promising potential in quantum optics and quantum information processing
    • …
    corecore