22,008 research outputs found

    On the Parametrization of Flavor Mixing in the Standard Model

    Get PDF
    It is shown that there exist nine different ways to describe the flavor mixing, in terms of three rotation angles and one CP-violating phase, within the standard electroweak theory of six quarks. For the assignment of the complex phase there essentially exists a continuum of possibilities, if one allows the phase to appear in more than four elements of the mixing matrix. If the phase is restricted to four elements, the phase assignment is uniquely defined. If one imposes the constraint that the phase disappears in a natural way in the chiral limit in which the masses of the u and d quarks are turned off, only three of the nine parametrizations are acceptable. In particular the ``standard'' parametrization advocated by the Particle Data Group is not permitted. One parametrization, in which the CP-violating phase is restricted to the light quark sector, stands up as the most favorable description of the flavor mixing.Comment: Latex 8 page

    Higher-Derivative Gravity with Non-minimally Coupled Maxwell Field

    Full text link
    We construct higher-derivative gravities with a non-minimally coupled Maxwell field. The Lagrangian consists of polynomial invariants built from the Riemann tensor and the Maxwell field strength in such a way that the equations of motion are second order for both the metric and the Maxwell potential. We also generalize the construction to involve a generic non-minimally coupled pp-form field strength. We then focus on one low-lying example in four dimensions and construct the exact magnetically-charged black holes. We also construct exact electrically-charged z=2z=2 Lifshitz black holes. We obtain approximate dyonic black holes for the small coupling constant or small charges. We find that the thermodynamics based on the Wald formalism disagrees with that derived from the Euclidean action procedure, suggesting this may be a general situation in higher-derivative gravities with non-minimally coupled form fields. As an application in the AdS/CFT correspondence, we study the entropy/viscosity ratio for the AdS or Lifshitz planar black holes, and find that the exact ratio can be obtained without having to know the details of the solutions, even for this higher-derivative theory.Comment: Latex, 23 page

    Can the Lepton Flavor Mixing Matrix Be Symmetric?

    Get PDF
    Current neutrino oscillation data indicate that the 3x3 lepton flavor mixing matrix V is likely to be symmetric about its V_{e3}-V_{\mu 2}-V_{\tau 1} axis. This off-diagonal symmetry corresponds to three pairs of {\it congruent} unitarity triangles in the complex plane. Terrestrial matter effects can substantially modify the genuine CP-violating parameter and off-diagonal asymmetries of V in realistic long-baseline experiments of neutrino oscillations.Comment: RexTex 14 pages (4 PS figures). More discussions adde

    Implications of the KamLAND Measurement on the Lepton Flavor Mixing Matrix and the Neutrino Mass Matrix

    Get PDF
    We explore some important implications of the KamLAND measurment on the lepton flavor mixing matrix VV and the neutrino mass matrix MM. The model-independent constraints on nine matrix elements of VV are obtained to a reasonable degree of accuracy. We find that nine two-zero textures of MM are compatible with current experimental data, but two of them are only marginally allowed. Instructive predictions are given for the absolute neutrino masses, Majorana phases of CP violation, effective masses of the tritium beta decay and neutrinoless double beta decay.Comment: RevTex 15 pages (4 PS figures included

    Universal Elasticity and Fluctuations of Nematic Gels

    Full text link
    We study elasticity of spontaneously orientationally-ordered amorphous solids, characterized by a vanishing transverse shear modulus, as realized for example by nematic elastomers and gels. We show that local heterogeneities and elastic nonlinearities conspire to lead to anomalous nonlocal universal elasticity controlled by a nontrivial infared fixed point. Namely, at long scales, such solids are characterized by universal shear and bending moduli that, respectively, vanish and diverge at long scales, are universally incompressible and exhibit a universal negative Poisson ratio and a non-Hookean elasticity down to arbitrarily low strains. Based on expansion about five dimensions, we argue that the nematic order is stable to thermal fluctuation and local hetergeneities down to d_lc < 3.Comment: 4 RevTeX pgs, submitted to PR

    Network analysis of the worldwide footballer transfer market

    Full text link
    The transfer of football players is an important part in football games. Most studies on the transfer of football players focus on the transfer system and transfer fees but not on the transfer behavior itself. Based on the 470,792 transfer records from 1990 to 2016 among 23,605 football clubs in 206 countries and regions, we construct a directed footballer transfer network (FTN), where the nodes are the football clubs and the links correspond to the footballer transfers. A systemic analysis is conduced on the topological properties of the FTN. We find that the in-degrees, out-degrees, in-strengths and out-strengths of nodes follow bimodal distributions (a power law with exponential decay), while the distribution of link weights has a power-law tail. We further figure out the correlations between node degrees, node strengths and link weights. We also investigate the general characteristics of different measures of network centrality. Our network analysis of the global footballer transfer market sheds new lights into the investigation of the characteristics of transfer activities.Comment: 7 pages, 6 figure

    Robust signatures of quantum radiation reaction in focused ultrashort laser pulses

    Get PDF
    Radiation reaction effects in the interaction of an electron bunch with a superstrong focused ultrashort laser pulse are investigated in the quantum radiation dominated regime. The angle-resolved Compton scattering spectra are calculated in laser pulses of variable duration using a semi-classical description for the radiation dominated dynamics and a full quantum treatment for the emitted radiation. In dependence of the laser pulse duration we find signatures of quantum radiation reaction in the radiation spectra, which are characteristic for the focused laser beam and visible in the qualitative behaviour of both the angular spread and the spectral bandwidth of the radiation spectra. The signatures are robust with respect to the variation of the electron and laser beam parameters in a large range. They fully differ qualitatively from those in the classical radiation reaction regime and are measurable with presently available laser technology
    • …
    corecore