23 research outputs found

    Multi-Channel Deconvolution for Forward-Looking Phase Array Radar Imaging

    No full text
    The cross-range resolution of forward-looking phase array radar (PAR) is limited by the effective antenna beamwidth since the azimuth echo is the convolution of antenna pattern and targets’ backscattering coefficients. Therefore, deconvolution algorithms are proposed to improve the imaging resolution under the limited antenna beamwidth. However, as a typical inverse problem, deconvolution is essentially a highly ill-posed problem which is sensitive to noise and cannot ensure a reliable and robust estimation. In this paper, multi-channel deconvolution is proposed for improving the performance of deconvolution, which intends to considerably alleviate the ill-posed problem of single-channel deconvolution. To depict the performance improvement obtained by multi-channel more effectively, evaluation parameters are generalized to characterize the angular spectrum of antenna pattern or singular value distribution of observation matrix, which are conducted to compare different deconvolution systems. Here we present two multi-channel deconvolution algorithms which improve upon the traditional deconvolution algorithms via combining with multi-channel technique. Extensive simulations and experimental results based on real data are presented to verify the effectiveness of the proposed imaging methods

    Echo Preprocessing to Enhance SNR for 2D CS-Based ISAR Imaging Method

    No full text
    A new CS-based inverse synthetic aperture radar (ISAR) imaging framework is proposed to enhance both the image performance and the robustness at a low SNR. An ISAR echo preprocessing method for enhancing the ISAR imaging quality of compressed sensing (CS) based algorithms is developed by implementing matched filtering, echo denoising and matrix optimization sequentially. After the preprocessing, the two-dimensional (2D) SL0 algorithm is applied to reconstruct an ISAR image in the range and cross-range plane through a series of 2D matrices using the 2D CS theory, rather than converting the 2D convex optimization problem to the one-dimensional (1D) problem in the image reconstruction process. The proposed preprocessing framework is verified by simulations and experiment. Simulations and experimental results show that the ISAR image obtained by the 2D sparse recovery algorithm with our proposed method has a better performance

    High Resolution Turntable Radar Imaging via Two Dimensional Deconvolution with Matrix Completion

    No full text
    Resolution is the bottleneck for the application of radar imaging, which is limited by the bandwidth for the range dimension and synthetic aperture for the cross-range dimension. The demand for high azimuth resolution inevitably results in a large amount of cross-range samplings, which always need a large number of transmit-receive channels or a long observation time. Compressive sensing (CS)-based methods could be used to reduce the samples, but suffer from the difficulty of designing the measurement matrix, and they are not robust enough in practical application. In this paper, based on the two-dimensional (2D) convolution model of the echo after matched filter (MF), we propose a novel 2D deconvolution algorithm for turntable radar to improve the radar imaging resolution. Additionally, in order to reduce the cross-range samples, we introduce a new matrix completion (MC) algorithm based on the hyperbolic tangent constraint to improve the performance of MC with undersampled data. Besides, we present a new way of echo matrix reconstruction for the situation that only partial cross-range data are observed and some columns of the echo matrix are missing. The new matrix has a better low rank property and needs just one operation of MC for all of the missing elements compared to the existing ways. Numerical simulations and experiments are carried out to demonstrate the effectiveness of the proposed method

    Well-Logging Constrained Seismic Inversion Based on Closed-Loop Convolutional Neural Network

    No full text

    A Fast and Accurate Sparse Continuous Signal Reconstruction by Homotopy DCD with Non-Convex Regularization

    No full text
    In recent years, various applications regarding sparse continuous signal recovery such as source localization, radar imaging, communication channel estimation, etc., have been addressed from the perspective of compressive sensing (CS) theory. However, there are two major defects that need to be tackled when considering any practical utilization. The first issue is off-grid problem caused by the basis mismatch between arbitrary located unknowns and the pre-specified dictionary, which would make conventional CS reconstruction methods degrade considerably. The second important issue is the urgent demand for low-complexity algorithms, especially when faced with the requirement of real-time implementation. In this paper, to deal with these two problems, we have presented three fast and accurate sparse reconstruction algorithms, termed as HR-DCD, Hlog-DCD and Hlp-DCD, which are based on homotopy, dichotomous coordinate descent (DCD) iterations and non-convex regularizations, by combining with the grid refinement technique. Experimental results are provided to demonstrate the effectiveness of the proposed algorithms and related analysis

    Study on brazing sealing and wave transmittance of single crystal Al2O3 microwave window

    No full text
    Al2O3 is considered a promising material for high-power microwave windows due to its low dielectric loss, excellent mechanical properties, and outstanding corrosion resistance. However, the inherent brittleness and low thermal conductivity pose significant challenges in achieving a dependable metal seal. In this study, vacuum brazing technology was employed to achieve brazing sealing between copper and single crystal Al2O3. The interface structure, mechanical properties, and sealing properties of the brazing joint were focused on. The brazed joints exhibited outstanding mechanical properties with an average shear strength of 207 MPa. The sealing performance of the Al2O3 window was conclusively determined to be excellent, as evidenced by the helium leakage rate and X-ray testing results. The dielectric properties and standing wave coefficient of Al2O3 window were analyzed using a vector network analyzer in combination with a quasi-optical resonator and free space test system. The results indicate that the Al2O3 window exhibits an extremely low dielectric loss of 10−5 magnitude at 95–98 GHz, accompanied by a standing wave coefficient below 2, which satisfies the requirements of high-power microwave windows

    Systematic analysis of histone acetylation regulators across human cancers

    No full text
    Abstract Background Histone acetylation (HA) is an important and common epigenetic pathway, which could be hijacked by tumor cells during carcinogenesis and cancer progression. However, the important role of HA across human cancers remains elusive. Methods In this study, we performed a comprehensive analysis at multiple levels, aiming to systematically describe the molecular characteristics and clinical relevance of HA regulators in more than 10000 tumor samples representing 33 cancer types. Results We found a highly heterogeneous genetic alteration landscape of HA regulators across different human cancer types. CNV alteration may be one of the major mechanisms leading to the expression perturbations in HA regulators. Furthermore, expression perturbations of HA regulators correlated with the activity of multiple hallmark oncogenic pathways. HA regulators were found to be potentially useful for the prognostic stratification of kidney renal clear cell carcinoma (KIRC). Additionally, we identified HDAC3 as a potential oncogene in lung adenocarcinoma (LUAD). Conclusion Overall, our results highlights the importance of HA regulators in cancer development, which may contribute to the development of clinical strategies for cancer treatment
    corecore