77 research outputs found

    Vibrational exciton nanoimaging of phases and domains in porphyrin nanocrystals.

    Get PDF
    Much of the electronic transport, photophysical, or biological functions of molecular materials emerge from intermolecular interactions and associated nanoscale structure and morphology. However, competing phases, defects, and disorder give rise to confinement and many-body localization of the associated wavefunction, disturbing the performance of the material. Here, we employ vibrational excitons as a sensitive local probe of intermolecular coupling in hyperspectral infrared scattering scanning near-field optical microscopy (IR s-SNOM) with complementary small-angle X-ray scattering to map multiscale structure from molecular coupling to long-range order. In the model organic electronic material octaethyl porphyrin ruthenium(II) carbonyl (RuOEP), we observe the evolution of competing ordered and disordered phases, in nucleation, growth, and ripening of porphyrin nanocrystals. From measurement of vibrational exciton delocalization, we identify coexistence of ordered and disordered phases in RuOEP that extend down to the molecular scale. Even when reaching a high degree of macroscopic crystallinity, identify significant local disorder with correlation lengths of only a few nanometers. This minimally invasive approach of vibrational exciton nanospectroscopy and -imaging is generally applicable to provide the molecular-level insight into photoresponse and energy transport in organic photovoltaics, electronics, or proteins

    Gradient-index optical filter synthesis with controllable and predictable refractive index profiles.

    Get PDF
    The Fourier transform thin film synthesis method often results in solutions that call for indices that lie outside the range of values of the available materials. To make the resulting refractive index profiles always realizable in our meta-mode sputtering machine, a modified Fourier transform synthesis method is proposed with which the reflectance spectra can be accurately synthesized with controllable and predictable refractive index profiles. In our procedure, an optimal phase function is explored to yield acceptable refractive index profiles. Then the overall thickness is estimated using the Parseval theorem. Finally, several errors inherent to the Fourier transform method, including the imprecision of the spectral function, the truncation of the film and the apodization of the refractive index profiles, are compensated by successive corrections to the magnitude of the spectral function. An explicit iterative formula based on the derivative of the magnitude function is proposed for the compensation of the spectral mismatches. We show with a number of examples that, with the proposed method, it is possible to synthesize gradient-index optical filters with almost any desired spectral performance using experimentally realizable refractive indices

    SunSat Design Competition 2014-2015 First Place Winner – Team CAST: Multi-Rotary Joints SPS

    Get PDF
    Space Power Satellite (SPS) is a huge spacecraft designed to collect solar energy in space for supplying electric power to the electric grid on the ground. The SPS concept was first proposed by Dr. Peter Glaser in 1968. Various studies on SPS in various countries have been produced over the past forty years. Today, there are multiple variations on this early concept, both in innovation and in optimization. Because of the huge size, immense mass and high power of these SPS installations, there are many technological difficulties. Here, a new Multi-Rotary Joints SPS (MR-SPS) concept is proposed. The large solar array is taken apart to illustrate the many small solar sub-arrays, and to show that each solar sub-array has two middle-power rotary joints. The extreme technical difficulty of high-power rotary joints is simplified by many middle-power rotary joints. The single-point failure problem existing in traditional SPS concept is also solved. At the same time, the modular solar arrays can be more easily assembled in GEO where the power can best be generated and continuously transmitted. Based on our new concept, a whole system full-life NPV analysis method has been developed to evaluate the economics. Our primary results show that the investment is near 30 billion US dollars, with development and transportation costs representing the main portions. When the price of power and the development and construction costs are fixed, the cost of capital becomes an important parameter in influencing the NPV. Click here to see the China Academy of Space Technology\u27s (CAST) video: Multi-Rotary Joints SPS - 2015 SunSat Design Competitio

    Group delay dispersion monitoring for computational manufacturing of dispersive mirrors

    Get PDF
    We present a computational manufacturing program for monitoring group delay dispersion (GDD). Two kinds of dispersive mirrors computational manufactured by GDD, broadband, and time monitoring simulator are compared. The results revealed the particular advantages of GDD monitoring in dispersive mirror deposition simulations. The self-compensation effect of GDD monitoring is discussed. GDD monitoring can improve the precision of layer termination techniques, it may become a possible approach to manufacture other optical coatings

    Analysis of tall fescue ESTs representing different abiotic stresses, tissue types and developmental stages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tall fescue (<it>Festuca arundinacea </it>Schreb) is a major cool season forage and turf grass species grown in the temperate regions of the world. In this paper we report the generation of a tall fescue expressed sequence tag (EST) database developed from nine cDNA libraries representing tissues from different plant organs, developmental stages, and abiotic stress factors. The results of inter-library and library-specific <it>in silico </it>expression analyses of these ESTs are also reported.</p> <p>Results</p> <p>A total of 41,516 ESTs were generated from nine cDNA libraries of tall fescue representing tissues from different plant organs, developmental stages, and abiotic stress conditions. The <it>Festuca </it>Gene Index (FaGI) has been established. To date, this represents the first publicly available tall fescue EST database. <it>In silico </it>gene expression studies using these ESTs were performed to understand stress responses in tall fescue. A large number of ESTs of known stress response gene were identified from stressed tissue libraries. These ESTs represent gene homologues of heat-shock and oxidative stress proteins, and various transcription factor protein families. Highly expressed ESTs representing genes of unknown functions were also identified in the stressed tissue libraries.</p> <p>Conclusion</p> <p>FaGI provides a useful resource for genomics studies of tall fescue and other closely related forage and turf grass species. Comparative genomic analyses between tall fescue and other grass species, including ryegrasses (<it>Lolium </it>sp.), meadow fescue (<it>F. pratensis</it>) and tetraploid fescue (<it>F. arundinacea var glaucescens</it>) will benefit from this database. These ESTs are an excellent resource for the development of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) PCR-based molecular markers.</p

    Neutron scattering studies of heterogeneous catalysis

    Get PDF
    Understanding the structural dynamics/evolution of catalysts and the related surface chemistry is essential for establishing structure–catalysis relationships, where spectroscopic and scattering tools play a crucial role. Among many such tools, neutron scattering, though less-known, has a unique power for investigating catalytic phenomena. Since neutrons interact with the nuclei of matter, the neutron–nucleon interaction provides unique information on light elements (mainly hydrogen), neighboring elements, and isotopes, which are complementary to X-ray and photon-based techniques. Neutron vibrational spectroscopy has been the most utilized neutron scattering approach for heterogeneous catalysis research by providing chemical information on surface/bulk species (mostly H-containing) and reaction chemistry. Neutron diffraction and quasielastic neutron scattering can also supply important information on catalyst structures and dynamics of surface species. Other neutron approaches, such as small angle neutron scattering and neutron imaging, have been much less used but still give distinctive catalytic information. This review provides a comprehensive overview of recent advances in neutron scattering investigations of heterogeneous catalysis, focusing on surface adsorbates, reaction mechanisms, and catalyst structural changes revealed by neutron spectroscopy, diffraction, quasielastic neutron scattering, and other neutron techniques. Perspectives are also provided on the challenges and future opportunities in neutron scattering studies of heterogeneous catalysis

    Methylmercury Exposure and Health Effects from Rice and Fish Consumption: A Review

    Get PDF
    Methylmercury (MeHg) is highly toxic, and its principal target tissue in humans is the nervous system, which has made MeHg intoxication a public health concern for many decades. The general population is primarily exposed to MeHg through consumption of contaminated fish and marine mammals, but recent studies have reported high levels of MeHg in rice and confirmed that in China the main human exposure to MeHg is related to frequent rice consumption in mercury (Hg) polluted areas. This article reviews the progress in the research on MeHg accumulation in rice, human exposure and health effects, and nutrient and co-contaminant interactions. Compared with fish, rice is of poor nutritional quality and lacks specific micronutrients identified as having health benefits (e.g., n-3 long chain polyunsaturated fatty acid, selenium, essential amino acids). The effects of these nutrients on the toxicity of MeHg should be better addressed in future epidemiologic and clinical studies. More emphasis should be given to assessing the health effects of low level MeHg exposure in the long term, with appropriate recommendations, as needed, to reduce MeHg exposure in the rice-eating population

    Electric-Driven Polarization Meta-Optics for Tunable Edge-Enhanced Images

    Full text link
    In this study, we demonstrate an electrically driven, polarization-controlled metadevice to achieve tunable edge-enhanced images. The metadevice was elaborately designed by integrating single-layer metalens with a liquid-crystal plate to control the incident polarization. By modulating electric-driven voltages applied on the liquid-crystal plate, the metalens can provide two polarization-dependent phase profiles (hyperbolic phase and focusing spiral phase). Therefore, the metalens can perform two-dimensional focusing and spatial differential operation on an incident optical field, allowing dynamic switching between the bright-field imaging and the edge-enhanced imaging. Capitalizing on the compactness and dynamic tuning of the proposed metadevice, our scheme carves a promising path to image processing and biomedical imaging technology

    Electric-Driven Polarization Meta-Optics for Tunable Edge-Enhanced Images

    Full text link
    In this study, we demonstrate an electrically driven, polarization-controlled metadevice to achieve tunable edge-enhanced images. The metadevice was elaborately designed by integrating single-layer metalens with a liquid-crystal plate to control the incident polarization. By modulating electric-driven voltages applied on the liquid-crystal plate, the metalens can provide two polarization-dependent phase profiles (hyperbolic phase and focusing spiral phase). Therefore, the metalens can perform two-dimensional focusing and spatial differential operation on an incident optical field, allowing dynamic switching between the bright-field imaging and the edge-enhanced imaging. Capitalizing on the compactness and dynamic tuning of the proposed metadevice, our scheme carves a promising path to image processing and biomedical imaging technology
    • …
    corecore