785 research outputs found

    Self-organization and phase transition in financial markets with multiple choices

    Full text link
    Market confidence is essential for successful investing. By incorporating multi-market into the evolutionary minority game, we investigate the effects of investor beliefs on the evolution of collective behaviors and asset prices. When there exists another investment opportunity, market confidence, including overconfidence and under-confidence, is not always good or bad for investment. The roles of market confidence is closely related to market impact. For low market impact, overconfidence in a particular asset makes an investor become insensitive to losses and a delayed strategy adjustment leads to a decline in wealth, and thereafter, one's runaway from the market. For high market impact, under-confidence in a particular asset makes an investor over-sensitive to losses and one's too frequent strategy adjustment leads to a large fluctuation in asset prices, and thereafter, a decrease in the number of agents. At an intermediate market impact, the phase transition occurs. No matter what the market impact is, an equilibrium between different markets exists, which is reflected in the occurrence of similar price fluctuations in different markets. A theoretical analysis indicates that such an equilibrium results from the coupled effects of strategy updating and shift in investment. The runaway of the agents trading a specific asset will lead to a decline in the asset price volatility and such a decline will be inhibited by the clustering of the strategies. A uniform strategy distribution will lead to a large fluctuation in asset prices and such a fluctuation will be suppressed by the decrease in the number of agents in the market. A functional relationship between the price fluctuations and the numbers of agents is found

    Robust trend tests for genetic association in case-control studies using family data

    Get PDF
    We studied a trend test for genetic association between disease and the number of risk alleles using case-control data. When the data are sampled from families, this trend test can be adjusted to take into account the correlations among family members in complex pedigrees. However, the test depends on the scores based on the underlying genetic model and thus it may have substantial loss of power when the model is misspecified. Since the mode of inheritance will be unknown for complex diseases, we have developed two robust trend tests for case-control studies using family data. These robust tests have relatively good power for a class of possible genetic models. The trend tests and robust trend tests were applied to a dataset of Genetic Analysis Workshop 14 from the Collaborative Study on the Genetics of Alcoholism

    Selection of single-nucleotide polymorphisms in disease association data

    Get PDF
    We studied several methods for selecting single-nucleotide polymorphisms (SNPs) in a disease association study. Two major categories for analytical strategy are the univariate and the set selection approaches. The univariate approach evaluates each SNP marker one at a time, while the set selection approach tests disease association of a set of SNP markers simultaneously. We examined various test statistics that can be utilized in testing disease association and also reviewed several multiple testing procedures that can properly control the family-wise error rates when the univariate approach is applied to multiple markers. The set association methods were then briefly reviewed. Finally, we applied these methods to the data from Collaborative Study on the Genetics of Alcoholism (COGA)

    Non-receptor tyrosine kinase Src is required for ischemia-stimulated neuronal cell proliferation via Raf/ERK/CREB activation in the dentate gyrus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurogenesis in the adult mammalian hippocampus may contribute to repairing the brain after injury. However, Molecular mechanisms that regulate neuronal cell proliferation in the dentate gyrus (DG) following ischemic stroke insult are poorly understood. This study was designed to investigate the potential regulatory capacity of non-receptor tyrosine kinase Src on ischemia-stimulated cell proliferation in the adult DG and its underlying mechanism.</p> <p>Results</p> <p>Src kinase activated continuously in the DG 24 h and 72 h after transient global ischemia, while SU6656, the Src kinase inhibitor significantly decreased the number of bromodeoxyuridine (BrdU) labeling-positive cells of rats 7 days after cerebral ischemia in the DG, as well as down-regulated Raf phosphorylation at Tyr(340/341) site, and its down-stream signaling molecules ERK and CREB expression followed by 24 h and 72 h of reperfusion, suggesting a role of Src kinase as an enhancer on neuronal cell proliferation in the DG via modifying the Raf/ERK/CREB cascade. This hypothesis is supported by further findings that U0126, the ERK inhibitor, induced a reduction of adult hippocampal progenitor cells in DG after cerebral ischemia and down-regulated phospho-ERK and phospho-CREB expression, but no effect was detected on the activities of Src and Raf.</p> <p>Conclusion</p> <p>Src kinase increase numbers of newborn neuronal cells in the DG via the activation of Raf/ERK/CREB signaling cascade after cerebral ischemia.</p
    • …
    corecore