6,359 research outputs found

    QCD phase transitions via a refined truncation of Dyson-Schwinger equations

    Full text link
    We investigate both the chiral and deconfinement phase transitions of QCD matter in a refined scheme of Dyson-Schwinger equations, which have been shown to be successful in giving the meson mass spectrum and matching the interaction with the results from ab initio computation. We verify the equivalence of the chiral susceptibility criterion with different definitions for the susceptibility and confirm that the chiral susceptibility criterion is efficient to fix not only the chiral phase boundary but also the critical end point (CEP), especially when one could not have the effective thermodynamical potential. We propose a generalized Schwinger function criterion for the confinement. We give the phase diagram of both phase transitions and show that in the refined scheme the position of the CEP shifts to lower chemical potential and higher temperature. Based on our calculation and previous results of the chemical freeze out conditions, we propose that the CEP locates in the states of the matter generated by the Au--Au collisions with sNN=915\sqrt{s_{NN}^{}}=9\sim15 GeV.Comment: 12 pages, 6 figures, 1 tabl

    Interface Effect in QCD Phase Transitions via Dyson-Schwinger Equation Approach

    Full text link
    With the chiral susceptibility criterion we obtain the phase diagram of strong-interaction matter in terms of temperature and chemical potential in the framework of Dyson-Schwinger equations (DSEs) of QCD.After calculating the pressure and some other thermodynamic properties of the matter in the DSE method, we get the phase diagram in terms of temperature and baryon number density. We also obtain the interface tension and the interface entropy density to describe the inhomogeneity of the two phases in the coexistence region of the first order phase transition. After including the interface effect, we find that the total entropy density of the system increases in both the deconfinement (dynamical chiral symmetry restoration) and the hadronization (dynamical chiral symmetry breaking) processes of the first order phase transitions and thus solve the entropy puzzle in the hadronization process.Comment: 9 pages, 9 figures, and 1 tabl

    A Universal Constraint on the Infrared Behavior of the Ghost Propagator in QCD

    Full text link
    With proposing a unified description of the fields variation at the level of generating functional, we obtain a new identity for the quark-gluon interaction vertex based on gauge symmetry, which is similar to the Slavnov-Taylor Identities(STIs) based on the Becchi-Rouet-Stora-Tyutin transformation. With these identities, we find that in Landau gauge, the dressing function of the ghost propagator approaches to a constant as its momentum goes to zero, which provides a strong constraint on the infrared behaviour of ghost propagator.Comment: 4 pages, no figur

    Quark Condensates in Nuclear Matter in the Global Color Symmetry Model of QCD

    Full text link
    With the global color symmetry model being extended to finite chemical potential, we study the density dependence of the local and nonlocal scalar quark condensates in nuclear matter. The calculated results indicate that the quark condensates increase smoothly with the increasing of nuclear matter density before the critical value (about 12ρ0\rho_0) is reached. It also manifests that the chiral symmetry is restored suddenly as the density of nuclear matter reaches its critical value. Meanwhile, the nonlocal quark condensate in nuclear matter changes nonmonotonously against the space-time distance among the quarks.Comment: 15 pages, 3 figure

    SU(5) Symmetry of spdfg Interacting Boson Model

    Get PDF
    The extended interacting boson model with s-, p-, d-, f- and g-bosons being included (spdfg IBM) are investigated. The algebraic structure including the generators, the Casimir operators of the groups at the SU(5) dynamical symmetry and the branching rules of the irreducible representation reductions along the group chain are obtained. The typical energy spectrum of the Symmetry is given.Comment: 12 pages, 2 figure
    corecore