27 research outputs found

    Neural evidence for the use of digit-image mnemonic in a superior memorist: An fMRI study

    Get PDF
    Some superior memorists demonstrated exceptional memory for reciting a large body of information. The underlying neural correlates, however, are seldom addressed. C.L., the current holder of Guinness World Record for reciting 67,890 digits in π, participated in this functional magnetic resonance imaging (fMRI) study. Thirteen participants without any mnemonics training were included as controls. Our previous studies suggested that C.L. used a digit-image mnemonic in studying and recalling lists of digits, namely associating 2-digit groups of ‘00’ to ‘99’ with images and generating vivid stories out of them (Hu, Ericsson, Yang & Lu, 2009). Thus, 2-digit condition was included, with 1-digit numbers and letters as control conditions. We hypothesized that 2-digit condition in C.L. should elicit the strongest activity in the brain regions which are associated with his mnemonic. Functional MRI results revealed that bilateral frontal poles (FPs, BA10), left superior parietal lobule (SPL), left premotor cortex (PMC), and left dorsolateral prefrontal cortex (DLPFC), were more engaged in both the study and recall phase of 2-digit condition for C.L. relative to controls. Moreover, the left middle/inferior frontal gyri (M/IFG) and intraparietal sulci (IPS) were less engaged in the study phase of 2-digit condition for C.L. (vs. controls). These results suggested that C.L. relied more on brain regions that are associated with episodic memory other than verbal rehearsal while he used his mnemonic strategies. This study supported theoretical accounts of restructured cognitive mechanisms for the acquisition of superior memory performance

    Current Status and Outlook in the Application of Microalgae in Biodiesel Production and Environmental Protection

    No full text
    Microalgae have been currently recognized as one group of the most potential feedstocks for biodiesel production due to high productivity potential, efficient biosynthesis of lipids and less competition with food production. Moreover, utilization of microalgae with environmental purposes (CO2 fixation, NOX and wastewater treatment) and biorefinery have been reported. However, there are still challenges that need to be addressed to ensure stable large-scale production with positive net energy balance. This review gives an overview of the current status of the application of microalgae in biodiesel production and environmental protection. The practical problems not only facing the microalgae biodiesel production but also associated with microalgae application for environmental pollution control, in particular biological fixation of greenhouse gas (CO2 and NOX) and wastewater treatment are described in detail. Notably, the synergistic combination of various applications (e.g. food, medicine, wastewater treatment and flue gas treatment) with biodiesel production could enhance the sustainability and economics of the algal biodiesel production system

    Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean

    Get PDF
    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. The cDNA of GmIFR was 1199 bp containing a 939 bp open reading frame encoding a polypeptide of 312 amino acids. Sequence analysis suggested that GmIFR contained a NAD(P) domain of 107 amino acids. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (ABA), salicylic acid (SA). It is located in the cytoplasmic when transiently expressed in Arabidopsis protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while levels of genistein and glycitein had little change compared to that of control plants. Furthermore, we also found that the reactive oxygen species (ROS) content of transgenic soybean plants was significantly lower than that of control plants, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean

    heat shock factor genes of tall fescue and perennial ryegrass in response to temperature stress by RNA-Seq analysis

    Get PDF
    Heat shock factors (Hsfs) are important regulators of stress-response in plants. However, our understanding of Hsf genes and their responses to temperature stresses in two Pooideae cool-season grasses, Festuca arundinacea and Lolium perenne, is limited. Here we conducted comparative transcriptome analyses of plant leaves exposed to heat or cold stress for 10 h. Approximately, 30% and 25% of the genes expressed in the two species showed significant changes under heat and cold stress respectively, including subsets of Hsfs and their target genes. We uncovered 74 Hsfs in F. arundinacea and 52 Hsfs in L. perenne, and categorized these genes into three subfamilies, HsfA, HsfB, and HsfC based on protein sequence homology to known Hsf members in model organisms. The Hsfs showed a strong response to heat and/or cold stress. The expression of HsfAs was elevated under heat stress, especially in class HsfA2, which exhibited the most dramatic responses. HsfBs were upregulated by the both temperature conditions, and HsfCs mainly showed an increase in expression under cold stress. The target genes of Hsfs, such as heat shock protein (HSP), ascorbate peroxidase (APX), inositol-3-phosphate synthase (IPS), and galactinol synthase (GOLS1), showed strong and unique responses to different stressors. We comprehensively detected Hsfs and their target genes in F. arundinacea and L. perenne, providing a foundation for future gene function studies and genetic engineering to improve stress tolerance in grasses and other crops

    Probing the Debye dielectric relaxation in supercooled methanol

    Get PDF
    The explanation of the dielectric dynamics in methanol would offer knowledge of the Debye relaxation in supercooled monoalcohols. However, due to the fast crystallization, it is hard to attain the dynamics of pure methanol in the deeply supercooled region. In this paper we studied the dynamics of methanol - 2-ethyl-1-hexanol mixtures with methanol concentration up to 80 mol% using dielectric and calorimetric measurements. Two main relaxations are detected in the dielectric spectra of the mixtures, and the slower one generally reproduces the Debye relaxation features reported in earlier studies of other monoalcohols. The validity of the ideal mixing law is verified for the relaxation time of the slower dynamics in the mixtures. The results suggest that the Debye relaxation is present in the dielectric spectra of methanol. The temperature dependence of the Debye relaxation time is constructed for the supercooled methanol

    Rapidly diverging evolution of an atypical alkaline phosphatase (PhoAaty) in marine phytoplankton: insights from dinoflagellate alkaline phosphatases

    Get PDF
    Alkaline phosphatase (AP) is a key enzyme that enables marine phytoplankton to scavenge phosphorus (P) from dissolved organic phosphorus (DOP) when inorganic phosphate is scarce in the ocean. Yet how the AP gene has evolved in phytoplankton, particularly dinoflagellates, is poorly understood. We sequenced full-length AP genes and corresponding complementary DNA (cDNA) from 15 strains (10 species), representing 4 classes of the core dinoflagellate lineage, Gymnodiniales, Prorocentrales, Suessiales and Gonyaulacales. Dinoflagellate AP gene sequences exhibited high variability, containing variable introns, pseudogenes, single nucleotide polymorphisms and consequent variations in amino acid sequence, indicative of gene duplication events and consistent with the birth-and-death model of gene evolution. Further sequence comparison showed that dinoflagellate APs likely belong to an atypical type AP (PhoAaty), which shares conserved motifs with counterparts in marine bacteria, cyanobacteria, green algae, haptophytes and stramenopiles. Phylogenetic analysis suggested that PhoAaty probably originated from an ancestral gene in bacteria and evolved divergently in marine phytoplankton. Because variations in AP amino acid sequences may lead to differential subcellular localization and potentially different metal ion requirements, the multiple types of APs in algae may have resulted from selection for diversifying strategies to utilize DOP in the P variable marine environment

    Role of glycans in cancer cells undergoing epithelial-mesenchymal transition

    Get PDF
    The term cancer refers to a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. Epithelial-mesenchymal transition (EMT), a process whereby epithelial cells lose their cell polarity and cell-cell adhesion ability, and acquire migratory and invasive properties to gain mesenchymal phenotype, is an important step leading to tumor metastasis. Glycans such as N-glycans, O-glycans, and glycosphingolipids are involved in numerous biological processes, including inflammation, virus/bacteria-host interactions, cell-cell interactions, morphogenesis, and cancer development and progression. Aberrant expression of glycans has been observed in several EMT models, and the functional roles of such glycans in cancer development and progression has been investigated. We summarize here recent research progress regarding the functions of glycans in cancer cells undergoing EMT. Better understanding of the mechanisms underlying aberrant glycan patterns in EMT and cancer will facilitate the development of such glycans as cancer biomarkers or as targets in design and synthesis of anti-tumor drugs

    Electrophysiological correlates associated with contributions of perceptual and conceptual fluency to familiarity

    Get PDF
    The present research manipulated the fluency of unstudied items using masked repetition priming procedures during an explicit recognition test. Based on fluency-attribution accounts, which posit that familiarity can be driven by multiple forms of fluency, the relationship between masked priming-induced fluency and familiarity was investigated. We classified pictographic characters into High-Meaningfulness (High-M) and Low-Meaningfulness (Low-M) categories on the basis of subjective meaningfulness ratings and identified the distinct electrophysiological correlates of perceptual and conceptual fluency. The two types of fluency differed in associated ERP effects: 150-250 ms effects for perceptual fluency and FN400 effects for conceptual fluency. The ERPs of Low-M MP-same (items that were preceded by matching masked items) false alarms were more positive than correct rejections during 150-250 ms, whereas the ERPs of High-M MP-same false alarms were more positive than correct rejections during 300-500 ms. The topographic patterns of FN400 effects between High-M MP-same false alarms and Low-M MP-same false alarms were not different from those of High-M hits and Low-M hits. These results indicate that both forms of fluency can contribute to familiarity, and the neural correlates of conceptual fluency are not different from those of conceptual priming induced by prior study-phase exposure. We conclude that multiple neural signals potentially contribute to recognition memory, such as numerous forms of fluency differing in terms of their time courses

    Phylogeny of plant calcium and calmodulin-dependent protein kinases (CCaMKs) and functional analyses of tomato CCaMK in disease resistance

    Get PDF
    Calcium and calmodulin-dependent protein kinase (CCaMK) is a member of calcium/calmodulin-dependent protein kinase superfamily and is essential to microbe- plant symbiosis. To date, the distribution of CCaMK gene in plants has not yet been completely understood, and its function in plant disease resistance remains unclear. In this study, we systemically identified the CCaMK genes in genomes of 44 plant species in Phytozome and analyzed the function of tomato CCaMK (SlCCaMK) in resistance to various pathogens. CCaMKs in 18 additional plant species were identified, yet the absence of CCaMK gene in green algae and cruciferous species was confirmed. Sequence analysis of full-length CCaMK proteins from 44 plant species demonstrated that plant CCaMKs are highly conserved across all domains. Most of the important regulatory amino acids are conserved throughout all sequences, with the only notable exception being observed in N-terminal autophosphorylation site corresponding to Ser 9 in the Medicago truncatula CCaMK. CCaMK gene structures are similar, mostly containing six introns with a phase profile of 200200 and the exception was only noticed at the first exons. Phylogenetic analysis demonstrated that CCaMK lineage is likely to have diverged early from a calcium-dependent protein kinase (CDPK) gene in the ancestor of all nonvascular plant species. The SlCCaMK gene was widely and differently responsive to diverse pathogenic stimuli. Furthermore, knock-down of SlCCaMK reduced tomato resistance to Sclerotinia sclerotiorum and Pseudomonas syringae pv. tomato (Pst) DC3000 and decreased H2O2 accumulation in response to Pst DC3000 inoculation. Our results reveal that SlCCaMK positively regulates disease resistance in tomato via promoting H2O2 accumulation. SlCCaMK is the first CCaMK gene proved to function in plant disease resistance

    Understanding desiccation tolerance using the resurrection plant Boea hygrometrica as a model system

    Get PDF
    Vegetative tissues of Boea hygrometrica, a member of the Gesneriaceae family, can tolerate severe water loss to desiccated state and fully recover upon rehydration. Unlike many other so called resurrection plants, the detached leaves of B. hygrometrica also possess the same level of capacity for desiccation tolerance as that of whole plant. B. hygrometrica is distributed widely from the tropics to northern temperate regions in East Asia and grows vigorously in areas around limestone rocks, where dehydration occurs frequently, rapidly and profoundly. The properties of detached B. hygrometrica leaves and relative ease of culture have made it a useful system to study the adaptive mechanisms of desiccation tolerance. Extensive studies have been conducted to identify the physiological, cellular and molecular mechanisms underlying desiccation tolerance in the last decade, including specific responses to water stress, such as cell wall folding and pigment-protein complex stabilizing in desiccated leaves. In this review, the insight into the structural, physiological and biochemical, and molecular alterations that accompany the acquisition of desiccation tolerance in B. hygrometrica is described. Finally a future perspective is proposed, with an emphasis on the emerging regulatory roles of retroelements and histone modifications in the acquisition of DT, and the need of establishment of genome sequence database and high throughput techniques to identify novel regulators for fully understanding of the matrix of desiccation tolerance
    corecore