3,335 research outputs found
FROST -- Fast row-stochastic optimization with uncoordinated step-sizes
In this paper, we discuss distributed optimization over directed graphs,
where doubly-stochastic weights cannot be constructed. Most of the existing
algorithms overcome this issue by applying push-sum consensus, which utilizes
column-stochastic weights. The formulation of column-stochastic weights
requires each agent to know (at least) its out-degree, which may be impractical
in e.g., broadcast-based communication protocols. In contrast, we describe
FROST (Fast Row-stochastic-Optimization with uncoordinated STep-sizes), an
optimization algorithm applicable to directed graphs that does not require the
knowledge of out-degrees; the implementation of which is straightforward as
each agent locally assigns weights to the incoming information and locally
chooses a suitable step-size. We show that FROST converges linearly to the
optimal solution for smooth and strongly-convex functions given that the
largest step-size is positive and sufficiently small.Comment: Submitted for journal publication, currently under revie
- …