17,577 research outputs found
Universality of the edge tunneling exponent of fractional quantum Hall liquids
Recent calculations of the edge tunneling exponents in quantum Hall states
appear to contradict their topological nature. We revisit this issue and find
no fundamental discrepancies. In a microscopic model of fractional quantum Hall
liquids with electron-electron interaction and confinement, we calculate the
edge Green's function via exact diagonalization. Our results for
and 2/3 suggest that in the presence of Coulomb interaction, the sharpness of
the edge and the strength of the edge confining potential, which can lead to
edge reconstruction, are the parameters that are relevant to the universality
of the electron tunneling I-V exponent.Comment: 5 pages, 3 figure
Smile detection in the wild based on transfer learning
Smile detection from unconstrained facial images is a specialized and
challenging problem. As one of the most informative expressions, smiles convey
basic underlying emotions, such as happiness and satisfaction, which lead to
multiple applications, e.g., human behavior analysis and interactive
controlling. Compared to the size of databases for face recognition, far less
labeled data is available for training smile detection systems. To leverage the
large amount of labeled data from face recognition datasets and to alleviate
overfitting on smile detection, an efficient transfer learning-based smile
detection approach is proposed in this paper. Unlike previous works which use
either hand-engineered features or train deep convolutional networks from
scratch, a well-trained deep face recognition model is explored and fine-tuned
for smile detection in the wild. Three different models are built as a result
of fine-tuning the face recognition model with different inputs, including
aligned, unaligned and grayscale images generated from the GENKI-4K dataset.
Experiments show that the proposed approach achieves improved state-of-the-art
performance. Robustness of the model to noise and blur artifacts is also
evaluated in this paper
Individual Differences in EWA Learning with Partial Payoff Information
We extend experience-weighted attraction (EWA) learning to games in which only the set of possible
foregone payoffs from unchosen strategies are known, and estimate parameters separately for each
player to study heterogeneity. We assume players estimate unknown foregone payoffs from a strategy,
by substituting the last payoff actually received from that strategy, by clairvoyantly guessing the actual
foregone payoff, or by averaging the set of possible foregone payoffs conditional on the actual
outcomes. All three assumptions improve predictive accuracy of EWA. Individual parameter estimates
suggest that players cluster into two separate subgroups (which differ from traditional reinforcement
and belief learning)
On the afterglow from the receding jet of gamma-ray burst
According to popular progenitor models of gamma-ray bursts, twin jets should
be launched by the central engine, with a forward jet moving toward the
observer and a receding jet (or the counter jet) moving backwardly. However, in
calculating the afterglows, usually only the emission from the forward jet is
considered. Here we present a detailed numerical study on the afterglow from
the receding jet. Our calculation is based on a generic dynamical description,
and includes some delicate ingredients such as the effect of the equal arrival
time surface. It is found that the emission from the receding jet is generally
rather weak. In radio bands, it usually peaks at a time of d,
with the peak flux nearly 4 orders of magnitude lower than the peak flux of the
forward jet. Also, it usually manifests as a short plateau in the total
afterglow light curve, but not as an obvious rebrightening as once expected. In
optical bands, the contribution from the receding jet is even weaker, with the
peak flux being orders of magnitude lower than the peak flux of the
forward jet. We thus argue that the emission from the receding jet is very
difficult to detect. However, in some special cases, i.e., when the
circum-burst medium density is very high, or if the parameters of the receding
jet is quite different from those of the forward jet, the emission from the
receding jet can be significantly enhanced and may still emerge as a marked
rebrightening. We suggest that the search for receding jet emission should
mostly concentrate on nearby gamma-ray bursts, and the observation campaign
should last for at least several hundred days for each event.Comment: A few citations added, together with a few minor revisions, main
conclusions unchanged, accepted for publication in A&A, 7 figures, 10 Page
Difference of optical conductivity between one- and two-dimensional doped nickelates
We study the optical conductivity in doped nickelates, and find the dramatic
difference of the spectrum in the gap (\alt4 eV) between one- (1D)
and two-dimensional (2D) nickelates. The difference is shown to be caused by
the dependence of hopping integral on dimensionality. The theoretical results
explain consistently the experimental data in 1D and
2D nickelates, YCaBaNiO and LaSrNiO,
respectively. The relation between the spectrum in the X-ray aborption
experiments and the optical conductivity in LaSrNiO is
discussed.Comment: RevTeX, 4 pages, 4 figure
Effects of initial flow velocity fluctuation in event-by-event (3+1)D hydrodynamics
Hadron spectra and elliptic flow in high-energy heavy-ion collisions are
studied within a (3+1)D ideal hydrodynamic model with fluctuating initial
conditions given by the AMPT Monte Carlo model. Results from event-by-event
simulations are compared with experimental data at both RHIC and LHC energies.
Fluctuations in the initial energy density come from not only the number of
coherent soft interactions of overlapping nucleons but also incoherent
semi-hard parton scatterings in each binary nucleon collision. Mini-jets from
semi-hard parton scatterings are assumed to be locally thermalized through a
Gaussian smearing and give rise to non-vanishing initial local flow velocities.
Fluctuations in the initial flow velocities lead to harder transverse momentum
spectra of final hadrons due to non-vanishing initial radial flow velocities.
Initial fluctuations in rapidity distributions lead to expanding hot spots in
the longitudinal direction and are shown to cause a sizable reduction of final
hadron elliptic flow at large transverse momenta.Comment: 17 pages in RevTex, 18 figures, final version published in PR
- …