11,293 research outputs found

    Optimizing Lossy Compression Rate-Distortion from Automatic Online Selection between SZ and ZFP

    Full text link
    With ever-increasing volumes of scientific data produced by HPC applications, significantly reducing data size is critical because of limited capacity of storage space and potential bottlenecks on I/O or networks in writing/reading or transferring data. SZ and ZFP are the two leading lossy compressors available to compress scientific data sets. However, their performance is not consistent across different data sets and across different fields of some data sets: for some fields SZ provides better compression performance, while other fields are better compressed with ZFP. This situation raises the need for an automatic online (during compression) selection between SZ and ZFP, with a minimal overhead. In this paper, the automatic selection optimizes the rate-distortion, an important statistical quality metric based on the signal-to-noise ratio. To optimize for rate-distortion, we investigate the principles of SZ and ZFP. We then propose an efficient online, low-overhead selection algorithm that predicts the compression quality accurately for two compressors in early processing stages and selects the best-fit compressor for each data field. We implement the selection algorithm into an open-source library, and we evaluate the effectiveness of our proposed solution against plain SZ and ZFP in a parallel environment with 1,024 cores. Evaluation results on three data sets representing about 100 fields show that our selection algorithm improves the compression ratio up to 70% with the same level of data distortion because of very accurate selection (around 99%) of the best-fit compressor, with little overhead (less than 7% in the experiments).Comment: 14 pages, 9 figures, first revisio

    Filament L1482 in the California molecular cloud

    Full text link
    Aims. The process of gravitational fragmentation in the L1482 molecular filament of the California molecular cloud is studied by combining several complementary observations and physical estimates. We investigate the kinematic and dynamical states of this molecular filament and physical properties of several dozens of dense molecular clumps embedded therein. Methods. We present and compare molecular line emission observations of the J=2--1 and J=3--2 transitions of 12CO in this molecular complex, using the KOSMA 3-meter telescope. These observations are complemented with archival data observations and analyses of the 13CO J=1--0 emission obtained at the Purple Mountain Observatory 13.7-meter radio telescope at Delingha Station in QingHai Province of west China, as well as infrared emission maps from the Herschel Space Telescope online archive, obtained with the SPIRE and PACS cameras. Comparison of these complementary datasets allow for a comprehensive multi-wavelength analysis of the L1482 molecular filament. Results. We have identified 23 clumps along the molecular filament L1482 in the California molecular cloud. All these molecular clumps show supersonic non-thermal gas motions. While surprisingly similar in mass and size to the much better known Orion molecular cloud, the formation rate of high-mass stars appears to be suppressed in the California molecular cloud relative to that in the Orion molecular cloud based on the mass-radius threshold derived from the static Bonnor Ebert sphere. Our analysis suggests that these molecular filaments are thermally supercritical and molecular clumps may form by gravitational fragmentation along the filament. Instead of being static, these molecular clumps are most likely in processes of dynamic evolution.Comment: 10 pages, 9 figures, 2 tables, accepted to Astronomy and Astrophysic

    Robust multi-clue face tracking system

    Get PDF
    In this paper we present a multi-clue face tracking system, based on the combination of a face detector and two independent trackers. The detector, a variant of the Viola-Jones algorithm, is set to generate very low false positive error rate. It initiates the tracking system and updates its state. The trackers, based on 3DRS and optical flow respectively, have been chosen to complement each other in different conditions. The main focus of this work is the integration of the two trackers and the design of a closed loop detector-tracker system, aiming at achieving superior robustness at real-time operation on a PC platform. Tests were carried out to assess the actual performance of the system. With an average of about 95% correct face location rate and no significant false positives, the proposed approach appears to be particularly robust to complex backgrounds, ambient light variation, face orientation and scale changes, partial occlusions, different\ud facial expressions and presence of other unwanted faces

    Logical gaps in the approximate solutions of the social learning game and an exact solution

    Full text link
    After the social learning models were proposed, finding the solutions of the games becomes a well-defined mathematical question. However, almost all papers on the games and their applications are based on solutions built upon either an add-hoc argument or a twisted Bayesian analysis of the games. Here, we present logical gaps in those solutions and an exact solution of our own. We also introduced a minor extension to the original game such that not only logical difference but also difference in action outcomes among those solutions become visible.Comment: A major revisio

    Infall Motions in Massive Star-Forming Regions: Results from Years 1 & 2 of the MALT90 Survey

    Full text link
    Massive star-forming regions with observed infall motions are good sites for studying the birth of massive stars. In this paper, 405 compact sources have been extracted from the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) compact sources that also have been observed in the Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey during Years 1 and 2. These observations are complemented with Spitzer GLIMPSE/MIPSGAL mid-IR survey data to help classify the elected star-forming clumps into three evolutionary stages: pre-stellar, proto-stellar and UCHII regions. The results suggest that 0.05 g cm2^{-2} is a reliable empirical lower bound for the clump surface densities required for massive-star formation to occur. The optically thick HCO+^{+}(1-0) and HNC(1-0) lines, as well as the optically thin N2_{2}H+^{+}(1-0) line were used to search for infall motions toward these sources. By analyzing the asymmetries of the optically thick HCO+^{+}(1-0) and HNC(1-0) lines and the mapping observations of HCO+^{+}(1-0), a total of 131 reliable infall candidates have been identified. The HCO+^{+}(1-0) line shows the highest occurrence of obvious asymmetric features, suggesting that it may be a better infall motion tracer than other lines such as HNC(1-0). The detection rates of infall candidates toward pre-stellar, proto-stellar and UCHII clumps are 0.3452, 0.3861 and 0.2152, respectively. The relatively high detection rate of infall candidates toward UCHII clumps indicates that many UCHII regions are still accreting matter. The peak column densities and masses of the infall candidates, in general, display a increasing trend with progressing evolutionary stages. However, the rough estimates of the mass infall rate show no obvious variation with evolutionary stage.Comment: 10 pages, 9 figures and 5 tables. arXiv admin note: text overlap with arXiv:1302.2538 by other author
    corecore