2 research outputs found

    Fine-grained Private Knowledge Distillation

    Full text link
    Knowledge distillation has emerged as a scalable and effective way for privacy-preserving machine learning. One remaining drawback is that it consumes privacy in a model-level (i.e., client-level) manner, every distillation query incurs privacy loss of one client's all records. In order to attain fine-grained privacy accountant and improve utility, this work proposes a model-free reverse kk-NN labeling method towards record-level private knowledge distillation, where each record is employed for labeling at most kk queries. Theoretically, we provide bounds of labeling error rate under the centralized/local/shuffle model of differential privacy (w.r.t. the number of records per query, privacy budgets). Experimentally, we demonstrate that it achieves new state-of-the-art accuracy with one order of magnitude lower of privacy loss. Specifically, on the CIFAR-1010 dataset, it reaches 82.1%82.1\% test accuracy with centralized privacy budget 1.01.0; on the MNIST/SVHN dataset, it reaches 99.1%99.1\%/95.6%95.6\% accuracy respectively with budget 0.10.1. It is the first time deep learning with differential privacy achieve comparable accuracy with reasonable data privacy protection (i.e., exp(ϵ)1.5\exp(\epsilon)\leq 1.5). Our code is available at https://github.com/liyuntong9/rknn
    corecore