27 research outputs found

    The oyster genome reveals stress adaptation and complexity of shell formation

    Get PDF
    The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. Š 2012 Macmillan Publishers Limited. All rights reserved

    ATP6V1F is a novel prognostic biomarker and potential immunotherapy target for hepatocellular carcinoma

    No full text
    Abstract Hepatocellular carcinoma (HCC) is one of the deadliest malignancies worldwide, with late detection, ineffective treatment and poor overall survival. Immunotherapy, including immune checkpoint inhibitor (ICI) therapy, holds great potential for treatment of HCC. Although some patients respond well to ICIs, many fail to obtain a significant benefit. It is therefore of great interest to find appropriate markers to stratify patient responses to immunotherapy and to explore suitable targets for modulating the TME and immune cell infiltration. ATP6V1F encodes a constituent of vacuolar ATPase (V-ATPase). V-ATPase-mediated acidification of organelles is required for intracellular processes such as zymogen activation, receptor-mediated endocytosis, protein sorting and synaptic vesicle proton gradient generation. In this study, we confirmed for the first time that ATP6V1F is overexpressed in HCC and related to poor prognosis in these patients. We identified that overexpression of ATP6V1F is associated with infiltration of some immune cells and expression of several immune checkpoints. Furthermore, we explored the possible mechanisms of action of ATP6V1F. Finally, we conducted in vitro experiments, including wound healing, Transwell invasion, and apoptosis assays, to verify that ATP6V1F promotes development of HCC by promoting migration and invasion and inhibiting apoptosis of HCC cells. Our findings will contribute to providing precise immunotherapy to patients with HCC

    Wireless LC Conformal Temperature Sensor Based on Ag Film (9912-K FL) for Bearing Temperature Measurement

    No full text
    As the key component of aero-engines and industrial gas turbines, a bearing’s working temperature at high speed is close to 300 ℃. The measurement of an engine bearing’s temperature is of great significance to ensure flight safety. In this study, we present a wireless LC conformal temperature sensor for bearing temperatures, which integrates silver on the bearing surface in situ through a screen-printing process. This process makes Ag film (9912-K FL) firmly adhere to the bearing surface and realizes wireless measurements for bearing temperatures in situ. A high-temperature holding experiment of the prepared sensor was conducted, and the results showed that the sensor can work stably for 10 h at 300 ℃. We tested the designed wireless LC conformal temperature sensor at 20–270 ℃. The results showed that the proposed temperature sensor attained as good accuracy and stability in the temperature range 20–270 ℃. The sensitivity of the temperature measurements was 20.81 KHz/℃  when the bearing rotateds, the maximum repeatability was 0.039%, the maximum uncertainty was 0.081%, and the relative error was stable within  0.08%

    Propagation Structure of Intrinsic Brain Activity in Migraine without Aura

    No full text
    Previous studies have revealed highly reproducible patterns of temporally lagged brain activity in healthy human adults. However, it is unknown whether temporal organization of intrinsic activity is altered in migraines or if it relates to migraine chronification. In this resting-state functional magnetic resonance imaging study, temporal features of intrinsic activity were investigated using resting-state lag analysis, and 39 episodic migraine patients, 17 chronic migraine patients, and 35 healthy controls were assessed. Temporally earlier intrinsic activity in the hippocampal complex was revealed in the chronic migraine group relative to the other two groups. We also found earlier intrinsic activity in the medial prefrontal cortex in chronic compared with episodic migraines. Both migraine groups showed earlier intrinsic activity in the lateral temporal cortex and sensorimotor cortex compared with the healthy control group. Across all patients, headache frequency negatively correlated with temporal lag of the medial prefrontal cortex and hippocampal complex. Disrupted propagation of intrinsic activity in regions involved in sensory, cognitive and affective processing of pain may contribute to abnormal brain function during migraines. Decreased time latency in the lateral temporal cortex and sensorimotor cortex may be common manifestations in episodic and chronic migraines. The temporal features of the medial prefrontal cortex and hippocampal complex were associated with migraine chronification

    Radiation reduction for interventional radiology imaging: a video frame interpolation solution

    No full text
    Abstract Purpose The aim of this study was to diminish radiation exposure in interventional radiology (IR) imaging while maintaining image quality. This was achieved by decreasing the acquisition frame rate and employing a deep neural network to interpolate the reduced frames. Methods This retrospective study involved the analysis of 1634 IR sequences from 167 pediatric patients (March 2014 to January 2022). The dataset underwent a random split into training and validation subsets (at a 9:1 ratio) for model training and evaluation. Our approach proficiently synthesized absent frames in simulated low-frame-rate sequences by excluding intermediate frames from the validation subset. Accuracy assessments encompassed both objective experiments and subjective evaluations conducted by nine radiologists. Results The deep learning model adeptly interpolated the eliminated frames within IR sequences, demonstrating encouraging peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) results. The average PSNR values for angiographic, subtraction, and fluoroscopic modes were 44.94 dB, 34.84 dB, and 33.82 dB, respectively, while the corresponding SSIM values were 0.9840, 0.9194, and 0.7752. Subjective experiments conducted with experienced interventional radiologists revealed minimal discernible differences between interpolated and authentic sequences. Conclusion Our method, which interpolates low-frame-rate IR sequences, has shown the capability to produce high-quality IR images. Additionally, the model exhibits potential for reducing the frame rate during IR image acquisition, consequently mitigating radiation exposure. Critical relevance statement This study presents a critical advancement in clinical radiology by demonstrating the effectiveness of a deep neural network in reducing radiation exposure during pediatric interventional radiology while maintaining image quality, offering a potential solution to enhance patient safety. Key points • Reducing radiation: cutting IR image to reduce radiation. • Accurate frame interpolation: our model effectively interpolates missing frames. • High visual quality in terms of PSNR and SSIM, making IR procedures safer without sacrificing quality. Graphical Abstrac
    corecore