70 research outputs found

    CLIPood: Generalizing CLIP to Out-of-Distributions

    Full text link
    Out-of-distribution (OOD) generalization, where the model needs to handle distribution shifts from training, is a major challenge of machine learning. Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances. This paper aims at generalizing CLIP to out-of-distribution test data on downstream tasks. We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on the unseen test data. To exploit the semantic relations between classes from the text modality, CLIPood introduces a new training objective, margin metric softmax (MMS), with class adaptive margins for fine-tuning. To incorporate both pre-trained zero-shot model and fine-tuned task-adaptive model, CLIPood leverages a new optimization strategy, Beta moving average (BMA), to maintain a temporal ensemble weighted by Beta distribution. Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.Comment: Accepted by ICML 202

    Soil degradation regulates the effects of litter decomposition on soil microbial nutrient limitation: Evidence from soil enzymatic activity and stoichiometry

    Get PDF
    Soil microorganisms could obtain energy and nutrients during litter decomposition with the help of soil extracellular enzymes. The litter types were among the most critical factors that affect soil extracellular enzyme activities. However, how litter types modulate the soil extracellular enzyme activity with grassland gradation is unclear. Here, we conducted a 240-day experiment of two different types of litter decomposition on soil extracellular enzyme activity and stoichiometry in different degraded grasslands. We found that C-acquiring enzyme activity and the enzyme stoichiometry of C/N were higher in Chloris virgata litter than in Leymus chinensis litter at lightly degraded level and C-acquiring enzyme activity in C. virgata was 16.96% higher than in L. chinensis. P-acquiring enzyme activity had the same trend with litter types in moderately and highly degraded levels and it was 20.71% and 30.89% higher in C. virgata than that in L. chinensis, respectively. The change of the enzyme stoichiometry with litter types was only showed in the enzyme stoichiometry of C/N at lightly degraded level, suggesting that litter types only affected the microbial C limitation in lightly degraded grassland. Almost all soil extracellular enzyme activities and extracellular enzyme stoichiometry, except the enzyme stoichiometry of N/P, decreased with grassland degraded level increasing. All vector angles were less than 45° suggesting that soil microorganisms were limited by N rather than by P during the decomposition process. Enzyme vector analysis revealed that soil microbial communities were co-limited by C and N during litter decomposition. Moreover, based on Random Forest (explaining more than 80%), we found that soil total nitrogen, total carbon, total phosphorus, dissolved organic C, pH and EC were important factors affecting soil enzyme activities by degradation levels. Our results emphasized that degradation levels could modulate the influences of litter types on soil extracellular enzyme activity. Our study enhanced our understanding in resource requirements for microbial communities to litter resources in degraded grassland and helped us to provide new ideas for improving degraded grassland ecosystems

    Revamping of Chronic Respiratory Diseases in Low- and Middle-Income Countries

    Get PDF
    Low- and middle-income countries (LMICs) endure an asymmetrically high burden of worldwide disease and death caused by chronic respiratory diseases (CRDs), i.e., asthma, emphysema, bronchiectasis, and post-tuberculosis lung disease (PTLD). CRDs are firmly related with indigence, infectious diseases, and other non-communicable diseases (NCDs) and add to complex multi-disease with great impact on the lives and livelihood of those affected. The pertinence of CRDs to health and demographic wellbeing is relied upon to increment in the long time ahead, as expectations of life rise and the contending dangers of right on time youth mortality and irresistible infections level. The WHO has distinguished the counteraction and control of NCDs as an earnest improvement issue and crucial for the sustainable development goals (SDSs) by 2030. In this review, we center on CRDs in LMICs. We examine the early life roots of CRDs, challenges in their avoidance, identification and administration in LMICs, and the pathways to resolve for accomplish valid widespread wellbeing inclusion

    A Control-Performance-Based Partitioning Operating Space Approach in a Heterogeneous Multiple Model

    No full text
    An operating space partition method with control performance is proposed, where the heterogeneous multiple model is applied to a nonlinear system. Firstly, the heterogeneous multiple model is obtained from a nonlinear system at the given equilibrium points and transformed into a homogeneous multiple model with auxiliary variables. Secondly, an optimal problem where decision variables are composed of control input and boundary conditions of sub-models is formulated with the hybrid model developed from the homogeneous multiple model. The computational implementation of an optimal operating space partition algorithm is presented according to the Hamilton–Jacobi–Bellman equation and numerical method. Finally, a multiple model predictive controller is designed, and the computational implementation of the multiple model predictive controller is addressed with the auxiliary vectors. Furthermore, a continuous stirred tank reactor (CSTR) is used to confirm the effectiveness of the developed method as well as compare with other operating space decomposition methods

    Ethylene distribution and ventilation strategies of apple cold storage

    No full text
    Ethylene is a kind of plant hormone that may affect storage quality of fruit and corresponding ventilation strategies of cold storage. The purpose of this study was to explore the emission characteristics of ethylene and put forward ventilation strategies to reduce ethylene concentration. A real 230 t cold store for apples in Fufeng County of China was taken as the research object, Gas Chromatograph analysis (GC analysis) was applied to test ethylene concentration in the cold room, it was found that the indoor ethylene release rate peak appeared at 70 d. A 3-D, unsteady, incompressible and viscous numerical calculation model was developed and the component transport model was applied to numerically study the complicated phenomenon of heat transfer and mass transfer in the cold storage room. The results show that the ethylene concentration formed a tendency of diffusion from the apple zone to the air zone, and the highest ethylene concentration did not appear in the center of the apple zone, but appeared near the bottom of the apple zone. Furthermore, the air cooler was recommended to be running during ventilation for shorter ventilation time of 40 min and better temperature stability for cold storage

    Effects of Multiple-Metal-Compound Contamination on the Soil Microbial Community in Typical Karst Tea Plantations

    No full text
    In this study, the effects of pollution levels and heavy metal pollution on soil microbial diversity in karst tea plantations are reported. Four tea plantations from plateau hills, under forests, by lakesides and on steep slopes in the South China karst were used as research regions. Soil samples were taken from these tea plantations, the soil heavy metals Cd, Cr, Pb, Zn, Ni and Cu were tested using inductively coupled plasma-mass spectrometry, and Hg and As were tested via atomic fluorescence spectrometry. The soil microbes were analyzed via high-throughput sequencing technology. Heavy metal pollution was evaluated via the single factor index and pollution load index, and the correlation between soil heavy metals and the microbial community was analyzed via SPSS 18.0 and Canoco 5.0 software. The results showed that the studied tea plantation soils were greatly polluted by the heavy metals, Cd and Hg, to a low to moderate degree. The comprehensive pollution of multiple heavy metals occurred only in lakeside tea plantations, in which pollution reached a low degree. It is also suggested that Hg and Cd were the major contributors, followed by Cu. The soil microbial diversity in soil samples from lakeside tea plantations was the highest; however, the discrepancy in its dominant species composition was also the highest. When the pollution load index was close to 0.6, the microbial diversity decreased sharply. Afterward, the diversity and heterogeneity generally gently increased, and the dominant composition was more obvious. These results reveal that the impact of heavy metal pollution on soil microbial diversity was not very distinct, but the impact on the dominant microbial community composition was obvious. In addition, the heavy metals, Cd, Hg and Cu, were the key factors that impacted the soil microbial community composition

    Eco-Stoichiometric Characteristics of Rhizosphere and Bulk Soils of Smilax china L. along Vertical Zone Spectrum of Fanjing Mountain

    No full text
    To explore the correlations between nutrients and stoichiometric characteristics in the rhizosphere and bulk soils of understory Smilax china L. in forest ecosystems at different altitudes and to clarify the rhizosphere effect of understory vegetation in forest ecosystems and its response strategy to altitude, providing a theoretical basis for better forest ecological environment protection and high-quality development in Fanjing Mountain. Understory Smilax china L. at four different altitudes were selected, with the differences and influencing factors of carbon (C), nitrogen (N), phosphorus (P) and potassium (K) mass fractions and stoichiometric ratios in their rhizosphere and bulk soils analyzed. The average mass fractions of total C, total N and alkali-hydrolyzed N in the rhizosphere and bulk soils of Smilax china L. at different altitudes were 224.43 and 181.55 g·kg−1; 9.56 and 6.81 g·kg−1; and 648.19 and 600.70 g·kg−1, respectively. The rhizosphere effect of Smilax china L. was significant at altitudes of 500 m and 1000 m but became not so prominent with the rise of altitude. The C:N ratio in the rhizosphere and bulk soils ranged from 19.51 to 39.75 and the C:P ratio ranged from 225.29 to 543.05. C accumulation is greater than N accumulation in the rhizosphere and bulk soils of Smilax china L., and both present P limitation. Based on the comprehensive analysis of the mass fractions and eco-stoichiometric ratios of soil nutrients, the P limitation in Fanjing Mountain forest ecosystem is commonly seen and should be addressed

    Antenatal exposure to betamethasone induces placental 11β-hydroxysteroid dehydrogenase type 2 expression and the adult metabolic disorders in mice.

    No full text
    Antenatal overexposure to glucocorticoids causes fetal intrauterine growth restriction (IUGR) and adult metabolic disorders. 11β-hydroxysteroid dehydrogenase (11β-HSD) 1 and 2 are key enzymes for glucocorticoid metabolism, however, the detailed effects of antenatal overexposure to glucocorticoids on placental 11β-HSD1 and 2 expression and adult metabolic disorders remain obscure. Here, we report that, in placenta 11β-HSD1 is diffusely localized, whereas 11β-HSD2 is specifically expressed in labyrinthine layer. Exposure of pregnant dams to betamethasone significantly increases the expression of placental 11β-HSD2 but not 11β-HSD1, and decreases the weights of fetuses but not placentas. Antenatal exposure to betamethasone leads to either significant weight loss in the offspring younger than 10-week-old, or weight gain in those older than 14-week-old. Furthermore, antenatal exposure to betamethasone results in coexistence of various metabolic disorders in adult offspring, including hyperglycemia, glucose intolerance, low insulin secretory capacity and hyperlipidemia. The present study demonstrates that exposure of pregnant dams to betamethasone induces the expression of placental 11β-HSD2 but not 11β-HSD1, leads to fetal IUGR and causes adult metabolic disorders, providing evidence for fetal origins of adult diseases and the potential role of placental 11β-HSD2 in them

    Oral probiotics increased the proportion of Treg, Tfr, and Breg cells to inhibit the inflammatory response and impede gestational diabetes mellitus

    No full text
    Abstract Background Children of mothers with gestational diabetes mellitus (GDM) are more prone to acquire type 2 diabetes and obesity as adults. Due to this link, early intervention strategies that alter the gut microbiome may benefit the mother and kid long-term. This work uses metagenomic and transcriptome sequencing to investigate how probiotics affect gut microbiota dysbiosis and inflammation in GDM. Methods GDM and control metagenomic sequencing data were obtained from the SRA database. This metagenomic data helped us understand gut microbiota abundance and function. KEGG detected and extracted functional pathway genes. Transcriptome sequencing data evaluated GDM-related gene expression. Finally, GDM animal models were given probiotics orally to evaluate inflammatory response, regulatory immune cell fractions, and leptin protein levels. Results GDM patients had more Fusobacteria and Firmicutes, while healthy people had more Bacteroidetes. Gut microbiota composition may affect GDM by altering the L-aspartate and L-asparagine super pathways. Mannan degradation and the super pathway of L-aspartate and L-asparagine synthesis enhanced in GDM mice with leptin protein overexpression. Oral probiotics prevent GDM by lowering leptin. Oral probiotics increased Treg, Tfr, and Breg cells, which decreased TNF-α and IL-6 and increased TGF-β and IL-10, preventing inflammation and preserving mouse pregnancy. Conclusion Dysbiosis of the gut microbiota may increase leptin expression and cause GDM. Oral probiotics enhance Treg, Tfr, and Breg cells, which limit the inflammatory response and assist mice in sustaining normal pregnancy. Thus, oral probiotics may prevent GDM, enabling targeted gut microbiota modulation and maternal and fetal health
    corecore