9 research outputs found

    Industrial Intervened

    Get PDF
    The structure of China industrial company is quite different, because the company had many other related service only available to people who work there and their family, such as kindergarten, college, food factory, theatre, apartments and etc. That is the culture and social contents of a typical industrial company. It is also the characteristic of socialism of China. Like what Tschumi said, the social relevance and formal invention of architecture cannot be dissociate from the event that happen in it. It’s also related to what Cedric Price had done for the Fun Place that the architecture should be highly adaptable to the shifting culture and social condition of its time and place. In order to apply those social life into the site, I’m trying to study the scale and space of different types of programs. Since it’s about reusing an industrial site, there is always conflict about the scale of factories and space we experience during daily life. The “must-fit“ and “mis-fit“ of programs and scales are the experiment to examplify the possibilities of transforming social life narrative to re-develop of the site

    Unstable Pillar Failure under Soft Loading Condition

    Get PDF
    AbstractPillar rockburst is an unstable pillar failure and one of the most hazardous problems in the underground mining engineering of deep hard-rock mines. In order to study the mechanism of unstable pillar failure, laboratory tests, numerical simulation, and theoretical analysis are adopted. The disc spring group was used to realize the soft loading function of testing machine, where loading stiffness of testing machine can be adjusted by changing the number and combination mode of disc springs. The results show that the loading stiffness of testing machine has major effect on the post-peak failure behavior of rock specimen, which means that the elastic rebound of disc spring group determines the unstable failure characteristics of rock specimen. The sudden jump Δd of rock specimen deformation and the elastic energy release ΔW of disc spring group all increase with the decreased loading stiffness of testing machine, resulting in more severe rock unstable failure (pillar rockburst). The soft loading condition has buffering and delaying effects on rock failure, but it increases the unstable failure intensity of rock specimen. The numerical simulation reproduced the rock unstable failure and the elastic rebound behavior of disc spring group, which also illustrated the damage evolution process of rock unstable failure. The necessary condition of rock unstable failure and the analytical solution of sudden jump Δd and elastic energy release ΔW were derived based on catastrophe theory, which further verified the experimental results. This study reveals the physical essence of unstable pillar failure, which may help to under the mechanism of pillar rockburst and provide references for underground mining

    Numerical Shear Tests on the Scale Effect of Rock Joints under CNL and CND Conditions

    No full text
    The scale effect of rock joint shear behavior is an important subject in the field of rock mechanics. There is yet a lack of consensus regarding whether the shear strength of rock joints increases, decreases, or remains unchanged as the joint size increases. To explore this issue, a series of repeated and enlarged numerical joint models were established in this study using the particle flow code (PFC2D). The microparameters were calibrated by uniaxial compression tests and shear tests on the concrete material under the constant normal loading (CNL) condition. Three different normal stresses were adopted in numerical shear tests with joint specimen lengths ranging from 100 mm to 800 mm. In addition to the commonly used CNL, the constant normal displacement (CND) condition was established for the purposes of this study; the CND can be considered an extreme case of the constant normal stiffness (CNS) condition. The shear stress-shear displacement curves changed from brittle failure to ductile failure alongside a gradual decrease in peak shear strength as joint length increased. That is, an overall negative scale effect was observed. Positive scale effect or no scale effect is also possible within a limited joint length range. A positive correlation was also observed between the peak shear displacement and joint length, and a negative correlation between shear stiffness and joint length. These above statements are applicable to both repeated and enlarged joints under either CNL or CND conditions. When the normal stress is sufficiently high and shear dilatancy displacement is very small, the shear behavior of rock joints under CNL and CND conditions seems to be consistent. However, for shear tests under low initial normal stress, the peak shear strength achieved under the CND condition is much higher than that under the CNL condition, as the normal stresses of enlarged joints increase to greater extent than the repeated ones during shearing

    Effect of Shaft Pillar Extraction on Stability of Main Shaft: A Case Study at Xincheng Gold Mine, China

    No full text
    Mining of ore body in the vicinity of a shaft has a significant influence on its stability. The in situ monitoring and numerical simulation are employed to analyze the effect of shaft pillar extraction at Xincheng Gold Mine. The XI# ore body is recently found around and beneath the shaft, and mining in this area may be detrimental to the shaft. Firstly, on the base of geological survey and in situ displacement monitoring, mechanical parameters of rock mass are obtained and the displacement around the shaft is measured. Secondly, the sensitivities of five main factors that may affect the shaft displacement are analyzed by means of orthogonal experiment according to the numerical simulation with FLAC3D. Finally, a numerical model is established according to the in situ condition; in order to forecast the shaft displacement induced by mining activities of XI# orebody, the Mining Priority Index (MPI) is put forward and used to select the optimal mining sequence. Based on the comparison between the numerical results with the monitoring data, it is determined that the ore within 100 m from the shaft is not suggested to be extracted until the last period of the shaft life

    The Synergistic Effect of MoS2 and NiS on the Electrical Properties of Iron Anodes for Ni-Fe Batteries

    No full text
    In this paper, a series of Fe3O4/MoS2/NiS composite electrodes were synthesized by a simple coprecipitation method. The influence of different ratio additives (MoS2 and NiS) on the performance of iron anodes for Ni-Fe batteries was systematically investigated. In this paper, the mixed alkaline solution of 6 mol/L NaOH and 0.6 mol/L LiOH was used as electrolyte, and sintered Ni(OH)2 was used as counterelectrode. The experimental results show that the MoS2 and NiS additives can effectively eliminate the passivation phenomena in iron electrodes, reduce the electrode polarization, and increase the reversibility capacity. As a result, the Fe3O4/MoS2/NiS composite electrodes exhibit a high specific capacity, good rate performance, and long cycling stability. Especially, the Fe3O4/MoS2 (5%)/NiS (5%) electrode with a suitable ratio of additives can provide excellent electrochemical performance, with high discharge capacities of 657.9 mAh g−1, 639.8 mAh g−1, and 442.1 mAh g−1 at 600 mA g−1, 1200 mA g−1, and 2400 mA g−1, respectively. This electrode also exhibits good cycling stability
    corecore