20 research outputs found
Estimating weakening on hillslopes caused by strong earthquakes
The weakening of hillslopes during strong earthquakes increases landsliding rates in post-seismic periods. However, very few studies have addressed the amount of coseismic reduction in shear strength of hillslope materials. This makes estimation of post-seismic landslide susceptibility challenging. Here we propose a method to quantify the maximum shear-strength reduction expected on seismically disturbed hillslopes. We focus on a subset of the area affected by the 2008 Mw 7.9 Wenchuan, China earthquake. We combine physical and data-driven modeling approaches. First, we back-analyze shear-strength reduction at locations where post-seismic landslides occurred. Second, we regress the estimated shear-strength reduction against peak ground acceleration, local relief, and topographic position index to extrapolate the shear-strength reduction over the entire study area. Our results show a maximum of 60%–75% reduction in near-surface shear strength over a peak ground acceleration range of 0.5–0.9 g. Reduction percentages can be generalized using a data-driven model.</p
Uncertainty quantification of landslide runout motion considering soil interdependent anisotropy and fabric orientation
Natural soils often exhibit an anisotropic fabric pattern as a result of soil deposition, weathering, or filling. This paper aims to investigate the effect of soil interdependent anisotropy and fabric orientation on runout motions of landslides and evaluate the most critical fabric orientation for the post-failure behavior. The shear strength properties of soil deposit (i.e., cohesion c and friction angle φ) are modeled as negatively cross correlated bivariate random fields. The results reveal that the spatial variability and the negative cross-correlation of c and φ notably influence the post-failure behavior. In addition, the rotation of soil layer orientation significantly affects the runout motion. Based on the analyses, the deposition orientation of 30∘ is identified to produce the highest mean value and standard deviation of the runout distance. The findings from this study highlight the importance of considering the orientation of soil stratification, rather than only the magnitude of shear strength, in assessing the post-failure behavior of a landslide
Disaster mechanism and its deposition area of the Xiaochang gully debris flow in Hanyuan County industrial park
Influenced by the 2013“4•20” Lushan earthquake, geological disasters occurred frequently along the Baiyan River Basin in Hanyuan County. At present, there is a large amount of loose material sources in the Xiaochang gully, posing a significant risk of large-scale debris flows, which severely threaten the factories and mining enterprises in the Hanyuan Industrial Park plant. Therefore, understanding the mechanism of disaster occurrence and its hazard is of great significance for future debris flow prediction, early warning, and prevention engineering design. Combining field investigation, UAV aerial photography, remote sensing interpretation, and RAMMS, this study analyzes the development characteristics of debris flows in Xiaochang gully, simulates the process of debris flow movement and accumulation, and reveals the disaster mechanism of disaster occurrence. The results show that the current dynamic storage of the source in Xiaochang gully reaches 370,000 m3. A wide and gentle channel ( 900 m long, and average width of 60 m ) has naturally formed in the middle reaches of the basin, acting as a natural sedimentation pond, which intercepts small-scale debris flows. Numerical simulation results show that when the rainfall frequency is less than once every 20 years, the main deposition of debris flows occurs in the middle and upper reaches of the gully, and will not directly threaten the industrial park; when the rainfall frequency reaches once every 50 years, the outbreak of large-scale debris flow will impact the industrial park
An in-situ method for assessing soil aggregate stability in burned landscapes
Due to soil repellency in burned areas, slope runoff and soil erodibility escalates following forest fires, increasing the vulnerability to post-fire debris flows. Soil aggregate stability is a critical determinant of soil infiltration capacity and erosion susceptibility. The prevalent method of assessing soil aggregate stability in burned areas, the counting the number of water drop impacts (CND) method, is time-intensive and impractical for in-situ measurements. In response, this study introduces a novel technique based on the shock and vibration damage (SVD) effect for evaluating soil aggregate stability in burned areas. Thirteen distinct soil aggregate types were meticulously prepared for indoor simulated fire testing, with due consideration to factors such as bulk weight, organic matter content, and water repellency, which influence stability of soil aggregates. Employing a custom-built test apparatus, the mass loss rate (MLR) of soil aggregates was determined through orthogonal experiments using the SVD method and compared against the standard CND technique's quantification of water droplet-induced aggregate destruction. The findings demonstrated that SVD method, employing Test Scheme 6 (testing 20 aggregates, 1-meter impact height, 40% water content, and five impacts), exhibits excellent agreement (Kendall coefficient = 0.797) and correlation (R2 = 0.634) with CND method outcomes. This testing scheme, characterized by rapid determination and effective discrimination, is identified as the optimal testing approach. The SVD testing apparatus is straightforward, portable, and easily disassembled, rendering it suitable for on-site use. It can be used to distinguish the stability level of soil aggregates swiftly and quantitatively under various fire intensities in burned areas in situ, which is an important guiding significance for the study of soil erosion, erosion control, and post-fire debris flow initiation mechanism in burned areas
Investigation of Anisotropic Permeability and Porosity of CJRM considering Different Confinement Loading Pressures
An innovative method is proposed to prepare artificial columnar jointed rock masses (CJRM) with different columnar dip angles, and laboratory physical model tests are conducted to investigate anisotropic permeability and porosity characteristics of the prepared artificial CJRM. In the physical model experiment, permeability and porosity of artificial CJRM with different columnar dip angles is measured during three times cyclic loading and unloading of confinement pressure. Based on the results of the laboratory model tests, the Equivalent Continuum Media Model was applied to analyse anisotropic permeability of CJRM. The main conclusions are summarized as follows. In the first loading phase of confinement pressure, the impacts of confinement pressure on the anisotropic permeability of artificial CJRM, porosity, and the major and minor principle permeability coefficients (PPCs) are significant, while in the following stages of confinement pressure loading and unloading, the change of them is small, with stable value. Permeability of artificial CJRM gradually increases with rise of columnar dip angle, and the permeability anisotropy of artificial CJRM under low confinement pressure is higher than that under low confinement pressure
Insights into Deformation and Mechanism of a Reactivated Landslide Occurrence from Multi-Source Data: A Case Study in Li County, China
The investigation of reactivated landslides in the alpine-canyon areas suffers the difficult accessibility of precipitous terrain. In particular, when reactivated landslides occur along the major roads, efforts are focused on measuring ground surface displacements during road construction. Nevertheless, the ancient landslide deposits may reactivate after several years of road operation, while they show a stable state during the road construction. The characterization of this type of reactivated landslides is challenging, due to their complex mechanism and the limited monitoring data. Appropriate multi-source data can provide insights into deformation fields and enhance the understanding of landslide mechanisms, ensuring the outperformance of remedial works. This paper reports a recent Tangjiawan reactivated landslide along the Wenchuan-Maerkang Highway in Li County, China. The outcomes, including satellite InSAR, in situ real-time monitoring, and detailed ground and UAV investigation, conducted at this landslide are presented. Early deformation of the reactivated landslide began from 2019, with an InSAR-derived velocity of −11.7 mm/year, furthermore, a significant subsidence of about 21.2 mm, which occurred within a span of only 12 days from 3 June 2020 to 15 June 2020, was observed. The deformation characteristics derived from in situ monitoring during the remedial works were likely firstly associated with the initial unreinforced slope condition and the heavy rainfall. Subsequently, the displacement evolution transformed into deformation induced by time-dependent reduction in slope strength under rainfall conditions. The existing of unconsolidated deposits derived from ancient landslides, along with a fragile geo-structure consisting of rock blocks and gravels interlayered with breccias, exacerbated by large relief created a predisposition for landslide reactivation. Furthermore, 13 days of antecedent cumulative rainfall totaling 224.5 mm directly triggered the occurrence of a landslide event. The significance and implications of integrating multiple monitoring techniques are emphasized
Experimental Investigation of Impact Response of RC Slabs with a Sandy Soil Cushion Layer
The impact response of reinforced-concrete (RC) slabs covered with a sandy soil cushion layer was investigated using an outdoor rockfall impact test platform. Impact tests were carried out by releasing rockfalls with different weights from different heights to impact a combined structure. Test data included the acceleration duration curve of the rockfall, strain of the concrete slab at multiple measuring points, and midpoint displacement duration curve of the slab. The test results showed an exponential relationship between the impact force acting on the cushion layer surface and cushion layer thickness. An empirical formula was used to calculate the maximum penetration, and the result was in good agreement with the test value. In addition, the attenuation rate of the impact force acting on the cushion layer increased exponentially with the increase in the cushion layer thickness, and the peak impact force could be attenuated by approximately 70% at a thickness of 0.6 m. Finally, the failure process and failure modes of the RC slabs were investigated
Study on dynamic mechanism of granular flow erosion and entrainment based on DEM theory
Abstract Background Granular flows are common on the Qinghai–Tibet Plateau and the Hengduan Mountains in China, and their dynamic process processes have obvious erosional and entrainment effects. On the one hand, the volume of the granular flow increases by a factor of several or ten, which significantly increases its ability to cause a catastrophe; on the other hand, the eroded loose material affects the granular flow dynamics process and changes its state of motion. Methods In this paper, the dynamic mechanism of granular flow erosion and entrainment is investigated by DEM simulation. Purpose The effects of different substrate materials and substrate boundary conditions on granular flow erosion and entrainment are analyzed, and the effects of material mixing caused by erosion and entrainment on the state of motion of granular flow are discussed. It was verified that the kinetic mechanisms of granular flow erosion and entrainment includes impact erosion, ploughing, and shear abrasion. Results And discovered that small matrix particle size, small matrix boundary friction, and small matrix thickness lead to stronger ploughing and shear abrasion; Large matrix fractal dimensions result in stronger ploughing and weaker shear abrasion, and the granular flow does not entrain large amounts of material to the accumulation zone. Meanwhile, the dynamics of erosion and entrainment of granular flow were investigated, and the results showed that: 1. The greater the erosion rate, the greater the velocity and kinetic energy of the granular flow, the greater the distance traveled, and the smaller the apparent friction angle (i.e., the greater the mobility). 2. The amount of small granules in a granular flow changes its fluidity, the more small granules there are, the more fluid it is. 3. The fit reveals that the substrate fractal dimension has the strongest effect on the velocity and kinetic energy of granular flow, followed by substrate thickness and substrate boundary friction
The July 2, 2017, Lantian landslide in Leibo, China : mechanisms and mitigation measures
Landslides triggered by the combination of heavy precipitation and anthropological disturbance in hilly areas cause severe damage to human lives, properties, and infrastructure constructions. A comprehensive investigation of the influencing factors and failure mechanisms of landslides are significant for disaster mitigation and prevention. This paper utilized the combination of detailed geological investigation, physical experimental testing as well as numerical modelling to determine the failure mechanism, and proposed a countermeasures of the Lantian landslide occurred on 2, July 2017. The results reveal that the Lantian landslide is a catastrophic reactivated slide which occurred in an active tectonic region in Southwest China. Because of the unique geological settings, the fully to highly weathered basalts in the study area with well-developed fractures favored the rainwater infiltration, which is the beneficial to slide reactivation. Engineering excavation and heavy precipitation are the main triggering factors to activate the slide motion. Two failure stages have been identified in the landslide. The first phase involves a shallow mass collapse originated at the upper slopes, which extends from the road to platform at rear part, which is triggered by excavation in the landslide region. Subjected to the following prolonged rainfall from 19 June to 2 July, 2017, the pore water pressure of the slope continually increased, and the groundwater table successively rise, resulting in a significant decrease of soil strength which leads to successive large-scale deep slide. Thereinto, the shallow collapse played a significant role in the formation of the deep slide. Based on the formation mechanisms of the landslide, detailed engineering mitigation measures, involving slope cutting, anchor cable frame, shotcrete and anchorage, retaining wall and intercepting ditch were suggested to reduce the future failure risk of the landslide