37,197 research outputs found

    Persistent spin current in spin-orbit coupling systems in the absence of an external magnetic field

    Full text link
    The spin-orbit coupling systems with a zero magnetic field is studied under the equilibrium situation, {\it i.e.}, without a voltage bias. A persistent spin current is predicted to exist under most circumstances, although the persistent charge current and the spin accumulation are identically zero. In particular, a two-dimensional quantum wire is investigated in detail. Surprisingly, a persistent spin current is found to flow along the confined direction, due to the spin precession in accompany with the particle motion. This provides an interesting example of constant spin flowing without inducing a spin accumulation, contrary to common intuition.Comment: 4 pages, 5 figure

    Quasi-energies and Floquet states of two weakly coupled Bose-Einstein condensates under periodic driving

    Full text link
    We investigate the quasi-energies and Floquet states of two weakly coupled Bose-Einstein condensates driven by a periodic force. The quasi-energies and Floquet states of this system are computed within two different theoretical frameworks: the mean-field model and the second-quantized model. The mean-field approach reveals a triangular structure in the quasi-energy band. Our analysis of the corresponding Floquet states shows that this triangle signals the onset of a localization phenomenon, which can be regarded as a generalization of the well-known phenomenon called coherent destruction of tunneling. With the second quantized model, we find also a triangular structure in the quantum quasi-energy band, which is enveloped by the mean-field triangle. The close relation between these two sets of quasi-energies is further explored by a semi-classical method. With a Sommerfeld rule generalized to time-dependent systems, the quantum quasi-energies are computed by quantizing semiclassically the mean-field model and they are found to agree very well with the results obtained directly with the second-quantized model.Comment: 8pages,12figure

    Bias-controllable intrinsic spin polarization in a quantum dot

    Full text link
    We propose a novel scheme to efficiently polarize and manipulate the electron spin in a quantum dot. This scheme is based on the spin-orbit interaction and it possesses following advantages: (1) The direction and the strength of the spin polarization is well controllable and manipulatable by simply varying the bias or the gate voltage. (2) The spin polarization is quite large even with a weak spin-orbit interaction. (3) Both electron-electron interaction and multi-energy levels do not weaken but strengthen the spin polarization. (4) It has the short spin flip time. (5) The device is free of a magnetic field or a ferromagnetic material. (6) It can be easily realized with present technology.Comment: 9 pages, 5 figure

    Specific Involvement of G Proteins in Regulation of Serum Response Factor-mediated Gene Transcription by Different Receptors

    Get PDF
    Regulation of serum response factor (SRF)-mediated gene transcription by G protein subunits and G protein-coupled receptors was investigated in transfected NIH3T3 cells and in a cell line that was derived from mice lacking G_(αq) and G_(α11). We found that the constitutively active forms of the α subunits of the G_q and G_(12) class of G proteins, including Gα_q, Gα_(11), Gα_(14), Gα_(16), Gα_(12), and Gα_(13), can activate SRF in NIH3T3 cells. We also found that the type 1 muscarinic receptor (m1R) and α_1-adrenergic receptor (AR)-mediated SRF activation is exclusively dependent on Gα_(q/11), while the receptors for thrombin, lysophosphatidic acid (LPA), thromboxane A2, and endothelin can activate SRF in the absence of Gα_(q/11). Moreover, RGS12 but not RGS2, RGS4, or Axin was able to inhibit Gα_(12) and Gα_(13)-mediated SRF activation. And RGS12, but not other RGS proteins, blocked thrombin- and LPA-mediated SRF activation in the Gα_(q/11)-deficient cells. Therefore, the thrombin, LPA, thromboxane A2, and endothelin receptors may be able to couple to Gα_(12/13). On the contrary, receptors including β_2- and α_2-ARs, m2R, the dopamine receptors type 1 and 2, angiotensin receptors types 1 and 2, and interleukin-8 receptor could not activate SRF in the presence or absence of Gα_(q/11), suggesting that these receptors cannot couple to endogenous G proteins of the G_(12) or G_q classes

    Abelian and non-abelian anyons in integer quantum anomalous Hall effect and topological phase transitions via superconducting proximity effect

    Full text link
    We study the quantum anomalous Hall effect described by a class of two-component Haldane models on square lattices. We show that the latter can be transformed into a pseudospin triplet p+ip-wave paired superfluid. In the long wave length limit, the ground state wave function is described by Halperin's (1,1,-1) state of neutral fermions analogous to the double layer quantum Hall effect. The vortex excitations are charge e/2 abelian anyons which carry a neutral Dirac fermion zero mode. The superconducting proximity effect induces `tunneling' between `layers' which leads to topological phase transitions whereby the Dirac fermion zero mode fractionalizes and Majorana fermions emerge in the edge states. The charge e/2 vortex excitation carrying a Majorana zero mode is a non-abelian anyon. The proximity effect can also drive a conventional insulator into a quantum anomalous Hall effect state with a Majorana edge mode and the non-abelian vortex excitations.Comment: 6 pages, 4 figures, accepted by Phys. Rev.

    Resonant Spin Hall Conductance in Two-Dimensional Electron Systems with Rashba Interaction in a Perpendicular Magnetic Field

    Get PDF
    We study transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin orbit coupling competes with Zeeman splitting to introduce additional degeneracies between different Landau levels at certain magnetic fields. This degeneracy, if occuring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as lnT-\ln T at low temperatures. The Hall conductance is unaffected by the Rashba coupling.Comment: 4 pages, 4 figure

    The angular spin current and its physical consequences

    Full text link
    We find that in order to completely describe the spin transport, apart from spin current (or linear spin current), one has to introduce the angular spin current. The two spin currents respectively describe the translational and rotational motion of a spin. The definitions of these spin current densities are given and their physical properties are discussed. Both spin current densities appear naturally in the spin continuity equation. Moreover we predict that the angular spin current can also induce an electric field E\vec{E}, and in particular E\vec{E} scales as 1/r21/r^2 at large distance rr, whereas the E\vec{E} field generated from the linear spin current goes as 1/r31/r^3.Comment: 7 pages, 2 figure
    corecore