35,532 research outputs found
Anyonic statistics with continuous variables
We describe a continuous-variable scheme for simulating the Kitaev lattice
model and for detecting statistics of abelian anyons. The corresponding quantum
optical implementation is solely based upon Gaussian resource states and
Gaussian operations, hence allowing for a highly efficient creation,
manipulation, and detection of anyons. This approach extends our understanding
of the control and application of anyons and it leads to the possibility for
experimental proof-of-principle demonstrations of anyonic statistics using
continuous-variable systems.Comment: 5 pages, 2 figures, appear in Phys. Rev.
Observations of enhanced nonlinear instability in the surface reflection of internal tides
Enhanced vertically standing waves formed by the superposition of two upward and downward going near-diurnal (D1) waves are observed during one semidiurnal (D2) spring tide in an approximately 75day long velocity record from the northeastern South China Sea. Bicoherence estimates suggest that the enhanced D1 waves are likely due to nonlinear parametric subharmonic instability of D2 internal tides. The timescale for energy growth by an order of magnitude is about 2.5days for these waves. In addition to subharmonics, higher harmonics D4 (=D2+D2) and a mean flow are generated by a different nonlinear interaction during the same D2 spring tide. The separation of coherent from incoherent internal tidal signals and a rotary spectral decomposition in the vertical direction reveal that D2 waves with opposite vertical propagation directions in the region of internal tide reflection from the surface may be responsible for the pronounced nonlinear instability
Positive mass theorems for asymptotically AdS spacetimes with arbitrary cosmological constant
We formulate and prove the Lorentzian version of the positive mass theorems
with arbitrary negative cosmological constant for asymptotically AdS
spacetimes. This work is the continuation of the second author's recent work on
the positive mass theorem on asymptotically hyperbolic 3-manifolds.Comment: 17 pages, final version, to appear in International Journal of
Mathematic
Modeling Pressure-Ionization of Hydrogen in the Context of Astrophysics
The recent development of techniques for laser-driven shock compression of
hydrogen has opened the door to the experimental determination of its behavior
under conditions characteristic of stellar and planetary interiors. The new
data probe the equation of state (EOS) of dense hydrogen in the complex regime
of pressure ionization. The structure and evolution of dense astrophysical
bodies depend on whether the pressure ionization of hydrogen occurs
continuously or through a ``plasma phase transition'' (PPT) between a molecular
state and a plasma state. For the first time, the new experiments constrain
predictions for the PPT. We show here that the EOS model developed by Saumon
and Chabrier can successfully account for the data, and we propose an
experiment that should provide a definitive test of the predicted PPT of
hydrogen. The usefulness of the chemical picture for computing astrophysical
EOS and in modeling pressure ionization is discussed.Comment: 16 pages + 4 figures, to appear in High Pressure Researc
Magnetic ordering and structural phase transitions in strained ultrathin SrRuO/SrTiO superlattice
Ruthenium-based perovskite systems are attractive because their Structural,
electronic and magnetic properties can be systematically engineered.
SrRuO/SrTiO superlattice, with its period consisting of one unit cell
each, is very sensitive to strain change. Our first-principles simulations
reveal that in the high tensile strain region, it transits from a ferromagnetic
(FM) metal to an antiferromagnetic (AFM) insulator with clear tilted octahedra,
while in the low strain region, it is a ferromagnetic metal without octahedra
tilting. Detailed analyses of three spin-down Ru-t orbitals just below
the Fermi level reveal that the splitting of these orbitals underlies these
dramatic phase transitions, with the rotational force constant of RuO
octahedron high up to 16 meV/Deg, 4 times larger than that of TiO.
Differently from nearly all the previous studies, these transitions can be
probed optically through the diagonal and off-diagonal dielectric tensor
elements. For one percent change in strain, our experimental spin moment change
is -0.140.06 , quantitatively consistent with our theoretical value
of -0.1 .Comment: 3 figures, 1 supplementary material, accepted by Phys. Rev. Let
Electron Delocalization in Gate-Tunable Gapless Silicene
The application of a perpendicular electric field can drive silicene into a
gapless state, characterized by two nearly fully spin-polarized Dirac cones
owing to both relatively large spin-orbital interactions and inversion symmetry
breaking. Here we argue that since inter-valley scattering from non-magnetic
impurities is highly suppressed by time reversal symmetry, the physics should
be effectively single-Dirac-cone like. Through numerical calculations, we
demonstrate that there is no significant backscattering from a single impurity
that is non-magnetic and unit-cell uniform, indicating a stable delocalized
state. This conjecture is then further confirmed from a scaling of conductance
for disordered systems using the same type of impurities.Comment: 6 pages, 3 figures, published versio
Crystal growth and quantum oscillations in the topological chiral semimetal CoSi
We survey the electrical transport properties of the single-crystalline,
topological chiral semimetal CoSi which was grown via different methods.
High-quality CoSi single crystals were found in the growth from tellurium
solution. The sample's high carrier mobility enables us to observe, for the
first time, quantum oscillations (QOs) in its thermoelectrical signals. Our
analysis of QOs reveals two spherical Fermi surfaces around the R point in the
Brillouin zone corner. The extracted Berry phases of these electron orbits are
consistent with the -2 chiral charge as reported in DFT calculations. Detailed
analysis on the QOs reveals that the spin-orbit coupling induced band-splitting
is less than 2 meV near the Fermi level, one order of magnitude smaller than
our DFT calculation result. We also report the phonon-drag induced large Nernst
effect in CoSi at intermediate temperatures
- …