1,585 research outputs found

    Induced Stem Cells as a Novel Multiple Sclerosis Therapy.

    Get PDF
    Stem cell replacement is providing hope for many degenerative diseases that lack effective therapeutic methods including multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. Transplantation of neural stem cells or mesenchymal stem cells is a potential therapy for MS thanks to their capacity for cell repopulation as well as for their immunomodulatory and neurotrophic properties. Induced pluripotent stem cell (iPSC), an emerging cell source in regenerative medicine, is also being tested for the treatment of MS. Remarkable improvement in mobility and robust remyelination have been observed after transplantation of iPSC-derived neural cells into demyelinated models. Direct reprogramming of somatic cells into induced neural cells, such as induced neural stem cells (iNSCs) and induced oligodendrocyte progenitor cells (iOPCs), without passing through the pluripotency stage, is an alternative for transplantation that has been proved effective in the congenital hypomyelination model. iPSC technology is rapidly progressing as efforts are being made to increase the efficiency of iPSC therapy and reduce its potential side effects. In this review, we discuss the recent advances in application of stem cells, with particular focus on induced stem/progenitor cells (iPSCs, iNSC, iOPCs), which are promising in the treatment of MS

    Generation of spatially-separated spin entanglement in a triple quantum dot system

    Full text link
    We propose a novel method for the creation of spatially-separated spin entanglement by means of adiabatic passage of an external gate voltage in a triple quantum dot system.Comment: 10 pages, 6 figure

    FSD-C10, a Fasudil derivative, promotes neuroregeneration through indirect and direct mechanisms.

    Get PDF
    FSD-C10, a Fasudil derivative, was shown to reduce severity of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through the modulation of the immune response and induction of neuroprotective molecules in the central nervous system (CNS). However, whether FSD-C10 can promote neuroregeneration remains unknown. In this study, we further analyzed the effect of FSD-C10 on neuroprotection and remyelination. FSD-C10-treated mice showed a longer, thicker and more intense MAP2 and synaptophysin positive signal in the CNS, with significantly fewer CD4(+) T cells, macrophages and microglia. Importantly, the CNS of FSD-C10-treated mice showed a shift of activated macrophages/microglia from the type 1 to type 2 status, elevated numbers of oligodendrocyte precursor cells (OPCs) and oligodendrocytes, and increased levels of neurotrophic factors NT-3, GDNF and BDNF. FSD-C10-treated microglia significantly inhibited Th1/Th17 cell differentiation and increased the number of IL-10(+) CD4(+) T cells, and the conditioned medium from FSD-C10-treated microglia promoted OPC survival and oligodendrocyte maturation. Addition of FSD-C10 directly promoted remyelination in a chemical-induced demyelination model on organotypic slice culture, in a BDNF-dependent manner. Together, these findings demonstrate that FSD-C10 promotes neural repair through mechanisms that involved both immunomodulation and induction of neurotrophic factors

    Current Reversals in a inhomogeneous system with asymmetric unbiased fluctuations

    Full text link
    We present a study of transport of a Brownian particle moving in periodic symmetric potential in the presence of asymmetric unbiased fluctuations. The particle is considered to move in a medium with periodic space dependent friction. By tuning the parameters of the system, the direction of current exhibit reversals, both as a function of temperature as well as the amplitude of rocking force. We found that the mutual interplay between the opposite driving factors is the necessary term for current reversals.Comment: 9 pages, 7 figure

    Similar material and numerical simulation of strata movement laws with long wall fully mechanized gangue backfilling

    Get PDF
    AbstractThis paper studies on strata and surface movement laws with long wall fully mechanized gangue backfilling technology by similar material simulation and numerical simulation method. The results indicate that 1) the overlying strata under the situation of mining with long wall fully mechanized gangue backfilling mainly shows a slow bending and subsidence, characterized by bending, fracturing, and bed separating, while the overlying strata develops fractured zone and bending zone only; and 2) if the compression rate of backfill is about 30%, the surface subsidence coefficient is around 0.22. In addition, this paper points out that improving the filling rate of gangue backfilling in goaf and the initial density of filling body are the main technological way to enhance the controlling effect of strata movement. Based on this point of view, four technical measures are proposed at the end

    Visualizing the dynamic behavior of poliovirus plus-strand RNA in living host cells

    Get PDF
    Dynamic analysis of viral nucleic acids in host cells is important for understanding virus–host interaction. By labeling endogenous RNA with molecular beacon, we have realized the direct visualization of viral nucleic acids in living host cells and have studied the dynamic behavior of poliovirus plus-strand RNA. Poliovirus plus-strand RNA was observed to display different distribution patterns in living Vero cells at different post-infection time points. Real-time imaging suggested that the translocation of poliovirus plus-strand RNA is a characteristic rearrangement process requiring intact microtubule network of host cells. Confocal-FRAP measurements showed that 49.4 ± 3.2% of the poliovirus plus-strand RNA molecules diffused freely (with a D-value of 9.6 ± 1.6 × 10(−10) cm(2)/s) within their distribution region, while the remaining (50.5 ± 2.9%) were almost immobile and moved very slowly only with change of the RNA distribution region. Under the electron microscope, it was found that virus-induced membrane rearrangement is microtubule-associated in poliovirus-infected Vero cells. These results reveal an entrapment and diffusion mechanism for the movement of poliovirus plus-strand RNA in living mammalian cells, and demonstrate that the mechanism is mainly associated with microtubules and virus-induced membrane structures

    Integrated Filtering Microstrip Duplex Antenna Array with High Isolation

    Get PDF
    This paper presents a 2 × 1 integrated filtering microstrip duplex antenna array with high isolation and same polarization. The antenna consists of two radiating patches fed by two T-shaped probes and a power distributing duplex network (PDDN). The PDDN is composed of two bandstop filters and a 180-degree phase shift power divider. And the PDDN is designed to achieve the functions of power division, frequency selectivity, and port isolation. A Transmission Line (TL) model is adopted to design the PDDN, and the detailed synthesis procedure is presented. For demonstration, the proposed antenna is designed and fabricated. The implemented antenna achieves an average gain of 10 dBi, a cross-polarization ratio of 20 dB, and an isolation of 35 dB within the operation band
    • …
    corecore