77 research outputs found
The dynamics of a delayed generalized fractional-order biological networks with predation behavior and material cycle
In this paper, a delayed generalized fractional-order biological networks with predation behavior and material cycle is comprehensively discussed. Some criteria of stability and bifurcation for the present system is presented. Moreover some results of two delays are obtained. Finally, some numerical simulations are presented to support the analytical results
User-Defined Privacy Location-Sharing System in Mobile Online Social Networks
With the fusion of social networks and location-based services, location sharing is one of the most important services in mobile online social networks (mOSNs). In location-sharing services, users have to provide their location information to service provider. However, location information is sensitive to users, which may cause a privacy-preserving issue needs to be solved. In the existing research, location-sharing services, such as friends’ query, does not consider the attacks from friends. In fact, a user may not trust all of his/her friends, so just a part of his/her friends will be allowed to obtain the user’s location information. In addition, users’ location privacy and social network privacy should be guaranteed. In order to solve the above problems, we propose a new architecture and a new scheme called User-Defined Privacy Location-Sharing (UDPLS) system for mOSNs. In our scheme, the query time is almost irrelevant to the number of friends. We also evaluate the performance and validate the correctness of our proposed algorithm through extensive simulations
Collective Human Opinions in Semantic Textual Similarity
Despite the subjective nature of semantic textual similarity (STS) and
pervasive disagreements in STS annotation, existing benchmarks have used
averaged human ratings as the gold standard. Averaging masks the true
distribution of human opinions on examples of low agreement, and prevents
models from capturing the semantic vagueness that the individual ratings
represent. In this work, we introduce USTS, the first Uncertainty-aware STS
dataset with ~15,000 Chinese sentence pairs and 150,000 labels, to study
collective human opinions in STS. Analysis reveals that neither a scalar nor a
single Gaussian fits a set of observed judgements adequately. We further show
that current STS models cannot capture the variance caused by human
disagreement on individual instances, but rather reflect the predictive
confidence over the aggregate dataset.Comment: 16 pages, 7 figure
ZBTB20 Is a Sequence-Specific Transcriptional Repressor of Alpha-Fetoprotein Gene
Alpha-fetoprotein (AFP) represents a classical model system to study developmental gene regulation in mammalian cells. We previously reported that liver ZBTB20 is developmentally regulated and plays a central role in AFP postnatal repression. Here we show that ZBTB20 is a sequence-specific transcriptional repressor of AFP. By ELISA-based DNA-protein binding assay and conventional gel shift assay, we successfully identified a ZBTB20-binding site at -104/-86 of mouse AFP gene, flanked by two HNF1 sites and two C/EBP sites in the proximal promoter. Importantly, mutation of the core sequence in this site fully abolished its binding to ZBTB20 in vitro, as well as the repression of AFP promoter activity by ZBTB20. The unique ZBTB20 site was highly conserved in rat and human AFP genes, but absent in albumin genes. These help to explain the autonomous regulation of albumin and AFP genes in the liver after birth. Furthermore, we demonstrated that transcriptional repression of AFP gene by ZBTB20 was liver-specific. ZBTB20 was dispensable for AFP silencing in other tissues outside liver. Our data define a cognate ZBTB20 site in AFP promoter which mediates the postnatal repression of AFP gene in the liver
Rapid identification of bacteria in water by multi-wavelength transmittance spectroscopy and the artificial neural network
Background: Multi-wavelength transmittance spectroscopy, in combination with the artificial neural network, has been a novel tool used to identify and classify microorganisms in recent years.Methods: In our work, the transmittance spectra in the region from 200 to 900 nm for four bacterial species of interest, Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Klebsiella pneumoniae (K.pneumoniae), and Salmonella typhimurium (S. typhi), were recorded using an ultraviolet–visible spectrophotometer. Considering too much redundant data on the full-wave band spectra, the characteristic wavelength variables were selected using the competitive adaptive reweighting sampling (CARS) algorithm. Spectra of the initial training set of these targeted microorganisms were used to create identification models representing the spectral variability of each species using four kinds of neural networks, namely, backpropagation (BP), radial basis function network (RBF), generalized regression neural network (GRNN), and probabilistic neural network (PNN).Results: The blinded isolate spectra of targeted species were identified using the four identification models given above. Compared to fullband modeling, after using CARS to screen the wavelength variables, four identification models are established for the 35 preferred characteristic wavelengths, and the prediction performance of the four models is notably improved. Among them, the CARS–PNN model is the best, and the identification rates of all targeted bacteria were achieved with 100% accuracy; the calculation time is just approximately 0.04 s.Discussion: The use of CARS can effectively remove useless information from the spectra, reduce model complexity, and enhance model prediction performance. Multi-wavelength transmission spectroscopy, combined with the CARS–PNN method, can provide a new method for the rapid detection of bacteria in water and could be readily extended for bacterial microbiological detection in blood and food
PARP-1 genetic polymorphism associated with radiation sensitivity of non-small cell lung cancer
About 70% of non-small cell lung cancer (NSCLC) patients require radiotherapy. However, due to the difference in radiation sensitivity, the treatment outcome may differ for the same pathology and choice of treatment. Poly (ADP-ribose) polymerase 1 (PARP-1) is a key gene responsible for DNA repair and is involved in base excision repair as well as repair of single strand break induced by ionizing radiation and oxidative damage. In order to investigate the relationship between PARP-1 gene polymorphism and radiation sensitivity in NSCLC, we collected 141 primary NSCLC patients undergoing three-dimensional conformal radiotherapy. For each case, the gross tumor volumes (GTV) before radiation and that after 40 Gy radiation were measured to calculate the tumor regression rate. TaqMan real-time polymerase chain reaction was performed to genotype the single-nucleotide polymorphisms (SNPs). Genotype frequencies for PARP-1 genotypes were 14.2% for C/C, 44.7% for C/G and 41.1% for G/G. The average tumor regression rate after 40 Gy radiation therapy was 35.1% ± 0.192. Tumor regression rate of mid-term RT of C/C genotype was 44.6% ± 0.170, which was higher than that of genotype C/G and G/G (32.4% ± 0.196 and 34.8% ± 0.188, respectively) with statistical significance (F = 3.169 p = 0.045). The higher tumor regression rate in patients with C/C genotype suggested that G allele was a protective factor against radiation therapy. Using the median tumor regression rate of 34%, we divided the entire cohort into two groups, and found that the frequency distribution of PARP-1 gene rs3219073 had significant difference between these two groups (p < 0.05). These results showed that PARP-1 gene polymorphism may affect patient radiation sensitivity and predict the efficacy of radiotherapy. It therefore presents an opportunity for developing new therapeutic targets to improve radiotherapy outcome
Effects of Xylo-Oligosaccharides on Growth and Gut Microbiota as Potential Replacements for Antibiotic in Weaning Piglets.
Xylo-oligosaccharides (XOS) is a well-known kind of oligosaccharide and extensively applied as a prebiotic. The objective of this study was to investigate the effect of XOS supplementation substituting chlortetracycline (CTC) on growth, gut morphology, gut microbiota, and hindgut short chain fatty acid (SCFA) contents of weaning piglets. A total of 180 weaned piglets were randomly allocated to three treatments for 28 days, as follows: control group (basal diet, CON), basal diet with 500 mg/kg (XOS500) XOS, and positive control (basal diet with 100 mg/kg CTC). Compared with the CON group, the piglets in the XOS500 group improved body weight (BW) on days 28, average daily gain (ADG) and reduced feed: gain ratio during days 1-28 (P < 0.05). The XOS500 supplementation increased Villus height and Villus height: Crypt depth ratio in the ileum (P < 0.05). Villus Height: Crypt Depth of the ileum was also increased in the CTC treatment group (P < 0.05). Meanwhile, the XOS500 supplementation increased significantly the numbers of goblet cells in the crypt of the cecum. High-throughput 16S rRNA gene sequencing revealed distinct differences in microbial compositions between the ileum and cecum. XOS500 supplementation significantly increased the bacterial diversity. However, CTC treatment markedly reduced the microbial diversity (P < 0.05). Meanwhile, XOS500 supplementation in the diet significantly increased the abundance of Lactobacillus genus compared to the CON and CTC group in the ileum and cecum (P < 0.01), whereas the level of Clostridium_sensu_stricto_1, Escherichia-Shigella, and Terrisporobacter genus in the XOS500 group were markedly lower than the CON and CTC group (P < 0.05). In addition, dietary supplementation with XOS500 significantly increased the total short-chain fatty acids, propionate and butyrate concentrations and decreased the acetate concentration compared to the CON group in the cecum (P < 0.05). In summary, dietary supplemented with XOS500 could enhance specific beneficial microbiota abundance and decrease harmful microbiota abundance to maintain the structure of the intestinal morphology and improve growth performance of weaned piglets. Thus, XOS may potentially function as an alternative to in-feed antibiotics in weaned piglets in modern husbandry
Transcriptome-Wide Analysis of RNA m6A Methylation and Gene Expression Changes Among Two Arabidopsis Ecotypes and Their Reciprocal Hybrids
The remodeling of transcriptome, epigenome, proteome, and metabolome in hybrids plays an important role in heterosis. N(6)-methyladenosine (m6A) methylation is the most abundant type of post-transcriptional modification for mRNAs, but the pattern of inheritance from parents to hybrids and potential impact on heterosis are largely unknown. We constructed transcriptome-wide mRNA m6A methylation maps of Arabidopsis thaliana Col-0 and Landsberg erecta (Ler) and their reciprocal F1 hybrids. Generally, the transcriptome-wide pattern of m6A methylation tends to be conserved between accessions. Approximately 74% of m6A methylation peaks are consistent between the parents and hybrids, indicating that a majority of the m6A methylation is maintained after hybridization. We found a significant association between differential expression and differential m6A modification, and between non-additive expression and non-additive methylation on the same gene. The overall RNA m6A level between Col-0 and Ler is clearly different but tended to disappear at the allelic sites in the hybrids. Interestingly, many enriched biological functions of genes with differential m6A modification between parents and hybrids are also conserved, including many heterosis-related genes involved in biosynthetic processes of starch. Collectively, our study revealed the overall pattern of inheritance of mRNA m6A modifications from parents to hybrids and a potential new layer of regulatory mechanisms related to heterosis formation
- …