91 research outputs found

    Magnetic ordering and structural phase transitions in strained ultrathin SrRuO3_{3}/SrTiO3_{3} superlattice

    Full text link
    Ruthenium-based perovskite systems are attractive because their Structural, electronic and magnetic properties can be systematically engineered. SrRuO3_3/SrTiO3_3 superlattice, with its period consisting of one unit cell each, is very sensitive to strain change. Our first-principles simulations reveal that in the high tensile strain region, it transits from a ferromagnetic (FM) metal to an antiferromagnetic (AFM) insulator with clear tilted octahedra, while in the low strain region, it is a ferromagnetic metal without octahedra tilting. Detailed analyses of three spin-down Ru-t2g_{2g} orbitals just below the Fermi level reveal that the splitting of these orbitals underlies these dramatic phase transitions, with the rotational force constant of RuO6_6 octahedron high up to 16 meV/Deg2^2, 4 times larger than that of TiO6_6. Differently from nearly all the previous studies, these transitions can be probed optically through the diagonal and off-diagonal dielectric tensor elements. For one percent change in strain, our experimental spin moment change is -0.14±\pm0.06 μB\mu_B, quantitatively consistent with our theoretical value of -0.1 μB\mu_B.Comment: 3 figures, 1 supplementary material, accepted by Phys. Rev. Let

    RainDiffusion:When Unsupervised Learning Meets Diffusion Models for Real-world Image Deraining

    Full text link
    What will happen when unsupervised learning meets diffusion models for real-world image deraining? To answer it, we propose RainDiffusion, the first unsupervised image deraining paradigm based on diffusion models. Beyond the traditional unsupervised wisdom of image deraining, RainDiffusion introduces stable training of unpaired real-world data instead of weakly adversarial training. RainDiffusion consists of two cooperative branches: Non-diffusive Translation Branch (NTB) and Diffusive Translation Branch (DTB). NTB exploits a cycle-consistent architecture to bypass the difficulty in unpaired training of standard diffusion models by generating initial clean/rainy image pairs. DTB leverages two conditional diffusion modules to progressively refine the desired output with initial image pairs and diffusive generative prior, to obtain a better generalization ability of deraining and rain generation. Rain-Diffusion is a non adversarial training paradigm, serving as a new standard bar for real-world image deraining. Extensive experiments confirm the superiority of our RainDiffusion over un/semi-supervised methods and show its competitive advantages over fully-supervised ones.Comment: 9 page

    Semi-MoreGAN: A New Semi-supervised Generative Adversarial Network for Mixture of Rain Removal

    Full text link
    Rain is one of the most common weather which can completely degrade the image quality and interfere with the performance of many computer vision tasks, especially under heavy rain conditions. We observe that: (i) rain is a mixture of rain streaks and rainy haze; (ii) the scene depth determines the intensity of rain streaks and the transformation into the rainy haze; (iii) most existing deraining methods are only trained on synthetic rainy images, and hence generalize poorly to the real-world scenes. Motivated by these observations, we propose a new SEMI-supervised Mixture Of rain REmoval Generative Adversarial Network (Semi-MoreGAN), which consists of four key modules: (I) a novel attentional depth prediction network to provide precise depth estimation; (ii) a context feature prediction network composed of several well-designed detailed residual blocks to produce detailed image context features; (iii) a pyramid depth-guided non-local network to effectively integrate the image context with the depth information, and produce the final rain-free images; and (iv) a comprehensive semi-supervised loss function to make the model not limited to synthetic datasets but generalize smoothly to real-world heavy rainy scenes. Extensive experiments show clear improvements of our approach over twenty representative state-of-the-arts on both synthetic and real-world rainy images.Comment: 18 page

    Understanding Large Language Model Based Fuzz Driver Generation

    Full text link
    Fuzz drivers are a necessary component of API fuzzing. However, automatically generating correct and robust fuzz drivers is a difficult task. Compared to existing approaches, LLM-based (Large Language Model) generation is a promising direction due to its ability to operate with low requirements on consumer programs, leverage multiple dimensions of API usage information, and generate human-friendly output code. Nonetheless, the challenges and effectiveness of LLM-based fuzz driver generation remain unclear. To address this, we conducted a study on the effects, challenges, and techniques of LLM-based fuzz driver generation. Our study involved building a quiz with 86 fuzz driver generation questions from 30 popular C projects, constructing precise effectiveness validation criteria for each question, and developing a framework for semi-automated evaluation. We designed five query strategies, evaluated 36,506 generated fuzz drivers. Furthermore, the drivers were compared with manually written ones to obtain practical insights. Our evaluation revealed that: while the overall performance was promising (passing 91% of questions), there were still practical challenges in filtering out the ineffective fuzz drivers for large scale application; basic strategies achieved a decent correctness rate (53%), but struggled with complex API-specific usage questions. In such cases, example code snippets and iterative queries proved helpful; while LLM-generated drivers showed competent fuzzing outcomes compared to manually written ones, there was still significant room for improvement, such as incorporating semantic oracles for logical bugs detection.Comment: 17 pages, 14 figure

    GeoSegNet: Point Cloud Semantic Segmentation via Geometric Encoder-Decoder Modeling

    Full text link
    Semantic segmentation of point clouds, aiming to assign each point a semantic category, is critical to 3D scene understanding.Despite of significant advances in recent years, most of existing methods still suffer from either the object-level misclassification or the boundary-level ambiguity. In this paper, we present a robust semantic segmentation network by deeply exploring the geometry of point clouds, dubbed GeoSegNet. Our GeoSegNet consists of a multi-geometry based encoder and a boundary-guided decoder. In the encoder, we develop a new residual geometry module from multi-geometry perspectives to extract object-level features. In the decoder, we introduce a contrastive boundary learning module to enhance the geometric representation of boundary points. Benefiting from the geometric encoder-decoder modeling, our GeoSegNet can infer the segmentation of objects effectively while making the intersections (boundaries) of two or more objects clear. Experiments show obvious improvements of our method over its competitors in terms of the overall segmentation accuracy and object boundary clearness. Code is available at https://github.com/Chen-yuiyui/GeoSegNet
    • …
    corecore