2 research outputs found
Rail break prediction and cause analysis using imbalanced in-service train data
Timely detection and identification of rail breaks are crucial for safety and reliability of railway networks. This paper proposes a new deep learning-based approach using the daily monitoring data from in-service trains. A time-series generative adversarial network (TimeGAN) is employed to mitigate the problem of data imbalance and preserve the temporal dynamics for generating synthetic rail breaks. A feature-level attention-based bidirectional recurrent neural networks (AM-BRNN) is proposed to enhance feature extraction and capture two-direction dependencies in sequential data for accurate prediction. The proposed approach is implemented on a three-year dataset collected from a section of railroads (up to 350 km) in Australia. A real-life validation is carried out to evaluate the prediction performance of the proposed model, where historical data is used to train the model and future ’unseen’ rail breaks along the whole track section are used for testing. The results show that the model can successfully predict 9 out of 11 rail breaks three months ahead of time with a false prediction of non-break of 8.2%. Predicting rail breaks three months ahead of time will provide railroads enough time for maintenance planning. Given the prediction results, SHAP method is employed to perform cause analysis for individual rail break. The results of cause analysis can assist railroads to plan appropriate maintenance to prevent rail breaks.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Railway Engineerin
Deep Bayesian survival analysis of rail useful lifetime
Reliable estimation of rail useful lifetime can provide valuable information for predictive maintenance in railway systems. However, in most cases, lifetime data is incomplete because not all pieces of rail experience failure by the end of the study horizon, a problem known as censoring. Ignoring or otherwise mistreating the censored cases might lead to false conclusions. Survival approach is particularly designed to handle censored data for analysing the expected duration of time until one event occurs, which is rail failure in this paper. This paper proposes a deep Bayesian survival approach named BNN-Surv to properly handle censored data for rail useful lifetime modelling. The proposed BNN-Surv model applies the deep neural network in the survival approach to capture the non-linear relationship between covariates and rail useful lifetime. To consider and quantify uncertainty in the model, Monte Carlo dropout, regarded as the approximate Bayesian inference, is incorporated into the deep neural network to provide the confidence interval of the estimated lifetime. The proposed approach is implemented on a four-year dataset including track geometry monitoring data, track characteristics data, various types of defect data, and maintenance and replacement (M&R) data collected from a section of railway tracks in Australia. Through extensive evaluation, including Concordance index (C-index) and root mean square error (RMSE) for evaluating model performance, as well as a proposed CW-index for evaluating uncertainty estimations, the effectiveness of the proposed approach is confirmed. The results show that, compared with other commonly used models, the proposed approach can achieve the best concordance index (C-index) of 0.80, and the estimated rail useful lifetimes are closer to real lifetimes. In addition, the proposed approach can provide the confidence interval of the estimated lifetime, with a correct coverage of 81% of the actual lifetime when the confidence interval is 1.38, which is more useful than point estimates in decision-making and maintenance planning of railroad systems.Railway Engineerin