50,582 research outputs found

    The effect of temperature evolution on the interior structure of H2{}_{2}O-rich planets

    Full text link
    For most planets in the range of radii from 1 to 4 R⊕_{\oplus}, water is a major component of the interior composition. At high pressure H2{}_{2}O can be solid, but for larger planets, like Neptune, the temperature can be too high for this. Mass and age play a role in determining the transition between solid and fluid (and mixed) water-rich super-Earth. We use the latest high-pressure and ultra-high-pressure phase diagrams of H2{}_{2}O, and by comparing them with the interior adiabats of various planet models, the temperature evolution of the planet interior is shown, especially for the state of H2{}_{2}O. It turns out that the bulk of H2{}_{2}O in a planet's interior may exist in various states such as plasma, superionic, ionic, Ice VII, Ice X, etc., depending on the size, age and cooling rate of the planet. Different regions of the mass-radius phase space are also identified to correspond to different planet structures. In general, super-Earth-size planets (isolated or without significant parent star irradiation effects) older than about 3 Gyr would be mostly solid.Comment: Accepted by ApJ, in print for March 2014 (14 pages, 3 colored figures, 1 table

    Optimization approaches for defining storage strategies in maritime container terminals

    Get PDF
    In maritime container terminals, yards have a primary role in permitting the efficient management of import and export flows. In this work, a mixed 0/1 linear programming model and a heuristic approach are proposed for defining storage rules in order to minimize the space used in the export yard. The minimization of land space is pursued by defining the rules to allocate containers into the bay-locations of the yard, in such a way as to minimize the number of bay-locations used and the empty slots within them. The main aim of this work is to propose a solution approach for permitting the yard manager to compare yard storage strategies for different transport demands, in such a way to be able to evaluate and, eventually, modify the storage strategy when the characteristics of the transport demand change. Computational experiments, based on both real instances and generated ones, are presented. All instances are derived by a case study related to an Italian terminal

    A novel mechanism of charge density wave in a transition metal dichalcogenide

    Full text link
    Charge density wave, or CDW, is usually associated with Fermi surfaces nesting. We here report a new CDW mechanism discovered in a 2H-structured transition metal dichalcogenide, where the two essential ingredients of CDW are realized in very anomalous ways due to the strong-coupling nature of the electronic structure. Namely, the CDW gap is only partially open, and charge density wavevector match is fulfilled through participation of states of the large Fermi patch, while the straight FS sections have secondary or negligible contributions.Comment: 5 pages and 4 figure

    Integration of crosswind forces into train dynamic modelling

    Get PDF
    In this paper a new method is used to calculate unsteady wind loadings acting on a railway vehicle. The method takes input data from wind tunnel testing or from computational fluid dynamics simulations (one example of each is presented in this article), for aerodynamic force and moment coefficients and combines these with fluctuating wind velocity time histories and train speed to produce wind force time histories on the train. This method is fast and efficient and this has allowed the wind forces to be applied to a vehicle dynamics simulation for a long length of track. Two typical vehicles (one passenger, one freight) have been modelled using the vehicle dynamics simulation package ‘VAMPIRE®’, which allows detailed modelling of the vehicle suspension and wheel—rail contact. The aerodynamic coefficients of the passenger train have been obtained from wind tunnel tests while those of the freight train have been obtained through fluid dynamic computations using large-eddy simulation. Wind loadings were calculated for the same vehicles for a range of average wind speeds and applied to the vehicle models using a user routine within the VAMPIRE package. Track irregularities measured by a track recording coach for a 40 km section of the main line route from London to King's Lynn were used as input to the vehicle simulations. The simulated vehicle behaviour was assessed against two key indicators for derailment; the Y/Q ratio, which is an indicator of wheel climb derailment, and the Δ Q/Q value, which indicates wheel unloading and therefore potential roll over. The results show that vehicle derailment by either indicator is not predicted for either vehicle for any mean wind speed up to 20 m/s (with consequent gusts up to around 30 m/s). At a higher mean wind speed of 25 m/s derailment is predicted for the passenger vehicle and the unladen freight vehicle (but not for the laden freight vehicle)
    • …
    corecore